-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathosi_sensorviewconfiguration.proto
975 lines (873 loc) · 37.2 KB
/
osi_sensorviewconfiguration.proto
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
syntax = "proto2";
option optimize_for = SPEED;
import "osi_common.proto";
import "osi_version.proto";
package osi3;
//
// \brief The configuration settings for the \c SensorView to be provided
// by the environment simulation.
//
// This message can be provided by the sensor model to the environment
// simulation, in which case it describes the input configuration that
// is desired by the sensor model. In response the environment simulation
// will configure the input and provide a new message of this type, which
// describes the actual configuration that it is going to employ. The two
// can and will differ, when either the environment simulation does not
// support a given requested configuration, and/or when the requested
// configuration allowed for multiple alternatives, in which case the set
// configuration will only contain the alternative chosen.
//
// It should be noted that this message is not intended to provide for
// parametrization of a generic sensor model, but rather for the automatic
// configuration of an environment simulation in order to supply the
// necessary input to it, depending on its actual configuration.
// Mechanisms to parametrize sensor models are currently packaging-specific,
// i.e. they depend on the packaging mechanism chosen: For FMU-packaging
// the parametrization can be implemented using normal FMU parameters,
// and the requested \c SensorViewConfiguration can depend on those parameter
// values by being defined as a calculatedParameter.
//
// The sensor-technology specific configurations are intended to allow
// sensor models to use useful sensor modeling base capabilities of the
// environment simulation (e.g. ray tracing engines, camera/lens image
// generation), which need configuration by the sensor model to supply
// suitable data. The specified details are not directly related to
// sensor details, but rather provide the necessary base machinery
// setup so that the data provided is suitable to model the sensor to
// a sufficient degree of fidelity internally. For example the number
// of rays parameters for the Lidar configuration does not match one to
// one with the number of laser rays a lidar sensor might cast, but
// rather specifies the number of rays being cast by a ray
// casting/tracing engine, which might be many more than the physical
// rays being cast at any point in time.
//
// This also implies that for sensors that have dynamically varying
// characteristics (e.g. switching between wide and narrow focus,
// switching update rates, etc.), the basic approach is to specify
// the maximum amount of data needed at all times here, and internally
// select the data that is needed at any point in time.
//
// In order to optimize the workload and bandwidth needed for sensor
// simulation, OSI packaging mechanisms can specify the ability to
// exchange \c SensorViewConfiguration messages not only prior to
// simulation startup, but also dynamically during simulation runs,
// thereby allowing dynamic input configuration switching to only
// request data that is needed in the current sensor mode. However
// this is more or less only a resource optimization strategy, and
// since providing fine-grained information like this can reveal
// internal characteristics of the sensor and/or sensor model, will
// not always be the preferred approach for reasons of IP protection.
//
message SensorViewConfiguration
{
// The interface version used by the sender (simulation environment).
//
// \rules
// is_set
// \endrules
//
optional InterfaceVersion version = 1;
// The ID of the sensor at host vehicle's mounting_position.
//
// This is the ID of the virtual sensor, to be used in its detected
// object output; it is distinct from the IDs of its physical detectors,
// which are used in the detected features.
//
// The ID is to be provided by the environment simulation, the sensor
// model is not in a position to provide a useful default value.
//
// \rules
// is_set
// \endrules
//
optional Identifier sensor_id = 2;
// The virtual mounting position of the sensor (origin and orientation
// of the sensor coordinate system) given in vehicle coordinates [1].
// The virtual position pertains to the sensor as a whole, regardless
// of the actual position of individual physical detectors, and governs
// the sensor-relative coordinates in detected objects of the sensor
// as a whole. Individual features detected by individual physical
// detectors are governed by the actual physical mounting positions
// of the detectors, as indicated in the technology-specific sub-views
// and sub-view configurations.
//
// \arg \b x-direction of sensor coordinate system: sensor viewing direction
// \arg \b z-direction of sensor coordinate system: sensor (up)
// \arg \b y-direction of sensor coordinate system: perpendicular to x and z
// right hand system
//
// \par Reference:
// [1] DIN Deutsches Institut fuer Normung e. V. (2013). <em>DIN ISO 8855 Strassenfahrzeuge - Fahrzeugdynamik und Fahrverhalten - Begriffe</em>. (DIN ISO 8855:2013-11). Berlin, Germany.
//
// \note The origin of vehicle's coordinate system in world frame is
// ( \c MovingObject::base . \c BaseMoving::position +
// Inverse_Rotation_yaw_pitch_roll( \c MovingObject::base . \c
// BaseMoving::orientation) * \c
// MovingObject::VehicleAttributes::bbcenter_to_rear) . The orientation of
// the vehicle's coordinate system is equal to the orientation of the
// vehicle's bounding box \c MovingObject::base . \c
// BaseMoving::orientation. \note A default position can be provided by the
// sensor model (e.g. to indicate the position the model was validated for),
// but this is optional; the environment simulation must provide a valid
// mounting position (based on the vehicle configuration) when setting the
// view configuration.
//
optional MountingPosition mounting_position = 3;
// The root mean squared error of the mounting position.
//
optional MountingPosition mounting_position_rmse = 4;
// Field of View in horizontal orientation of the sensor.
//
// This determines the limit of the cone of interest of ground truth
// that the simulation environment has to provide.
// Viewing range: [- \c #field_of_view_horizontal/2, \c
// #field_of_view_horizontal/2] azimuth in the sensor frame as defined in \c
// Spherical3d.
//
// Unit: rad
optional double field_of_view_horizontal = 5;
// Field of View in vertical orientation of the sensor.
//
// This determines the limit of the cone of interest of ground truth
// that the simulation environment has to provide.
// Viewing range: [- \c #field_of_view_vertical/2, \c
// #field_of_view_vertical/2] elevation in the sensor frame at zero azimuth
// as defined in \c Spherical3d.
//
// Unit: rad
optional double field_of_view_vertical = 6;
// Maximum range of the sensor
//
// This determines the limit of the cone of interest of ground truth
// that the simulation environment has to provide.
//
// Unit: m
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional double range = 7;
// The update cycle time of the sensor model.
//
// This specifies the rate at which the sensor model is provided with
// new input data.
//
// Unit: s
// \note In the case of FMU packaging this will correspond to the
// communication step size.
optional Timestamp update_cycle_time = 8;
// Initial update cycle offset of the sensor model.
//
// This specifies the initial offset (i.e. initial delay) of the
// sensor model update cycle that the simulation should take into
// account. It is defined against a simulation start time of 0:
// i.e. an initial offset of 0.008s would mean, that the initial
// update of sensor input data to the model should occur at 0+0.008s,
// and then update_cycle_time after that, etc. If the simulation
// start time of the simulation is non-zero, then the offset still
// has to be interpreted against a 0 start time, and not simply
// added on top of the start time: e.g. if the simulation starts at
// 0.030s, and the update cycle time is 0.020s, then the first
// update to the sensor input should happen at 0.048s, or 0.018s
// after simulation start. This convention is needed to ensure
// stable phase position of the offset in the case of changing
// simulation start times, e.g. for partial re-simulation.
//
// Unit: s
optional Timestamp update_cycle_offset = 9;
// Simulation Start time
//
// This specifies the simulation start time that the Simulation
// has chosen. This field has no defined meaning if provided by
// the sensor model.
//
// Unit: s
optional Timestamp simulation_start_time = 10;
// Omit Static Information
//
// This flag specifies whether \c GroundTruth information that
// was already provided using a GroundTruthInit parameter (e.g. <a href="https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/sensor-model/spec/ground_truth_init_parameters.html">OSMP GroundTruthInit</a>)
// at initialization time shall be omitted from the \c SensorView
// ground truth information.
//
// Setting the \c #omit_static_information field allows a clear split
// between the dynamic simulation data, which is contained in ground truth
// messages with the \c #omit_static_information flag, and the static
// simulation data, which is contained in the (OSMP) GroundTruthInit.
//
optional bool omit_static_information = 11;
// Generic Sensor View Configuration(s).
//
repeated GenericSensorViewConfiguration generic_sensor_view_configuration =
1000;
// Radar-specific Sensor View Configuration(s).
//
repeated RadarSensorViewConfiguration radar_sensor_view_configuration =
1001;
// Lidar-specific Sensor View Configuration(s).
//
repeated LidarSensorViewConfiguration lidar_sensor_view_configuration =
1002;
// Camera-specific Sensor View Configuration(s).
//
repeated CameraSensorViewConfiguration camera_sensor_view_configuration =
1003;
// Ultrasonic-specific Sensor View Configuration(s).
//
repeated UltrasonicSensorViewConfiguration
ultrasonic_sensor_view_configuration = 1004;
}
//
// \brief The configuration settings for the Generic Sensor View to be provided
// by the environment simulation.
//
message GenericSensorViewConfiguration
{
// The ID of the sensor at host vehicle's mounting_position.
//
// This is the ID of the physical sensor, to be used in its detected
// features output; it is distinct from the ID of its virtual sensor.
//
// The ID is to be provided by the environment simulation, the sensor
// model is not in a position to provide a useful default value.
//
optional Identifier sensor_id = 1;
// The physical mounting position of the sensor (origin and orientation
// of the sensor coordinate system) given in vehicle coordinates [1].
// The physical position pertains to this detector individually, and
// governs the sensor-relative coordinates in features detected by this
// detector.
//
// \arg \b x-direction of sensor coordinate system: sensor viewing direction
// \arg \b z-direction of sensor coordinate system: sensor (up)
// \arg \b y-direction of sensor coordinate system: perpendicular to x and z
// right hand system
//
// \par Reference:
// [1] DIN Deutsches Institut fuer Normung e. V. (2013). <em>DIN ISO 8855 Strassenfahrzeuge - Fahrzeugdynamik und Fahrverhalten - Begriffe</em>. (DIN ISO 8855:2013-11). Berlin, Germany.
//
// \note The origin of vehicle's coordinate system in world frame is
// ( \c MovingObject::base . \c BaseMoving::position +
// Inverse_Rotation_yaw_pitch_roll( \c MovingObject::base . \c
// BaseMoving::orientation) * \c
// MovingObject::VehicleAttributes::bbcenter_to_rear) . The orientation of
// the vehicle's coordinate system is equal to the orientation of the
// vehicle's bounding box \c MovingObject::base . \c
// BaseMoving::orientation. \note A default position can be provided by the
// sensor model (e.g. to indicate the position the model was validated for),
// but this is optional; the environment simulation must provide a valid
// mounting position (based on the vehicle configuration) when setting the
// view configuration.
//
optional MountingPosition mounting_position = 2;
// The root mean squared error of the mounting position.
//
optional MountingPosition mounting_position_rmse = 3;
// Field of View in horizontal orientation of the physical sensor.
//
// Viewing range: [- \c #field_of_view_horizontal/2, \c
// #field_of_view_horizontal/2] azimuth in the sensor frame as defined in \c
// Spherical3d.
//
// Unit: rad
optional double field_of_view_horizontal = 4;
// Field of View in vertical orientation of the physical sensor.
//
// Viewing range: [- \c #field_of_view_vertical/2, \c
// #field_of_view_vertical/2] elevation in the sensor frame at zero azimuth
// as defined in \c Spherical3d.
//
// Unit: rad
optional double field_of_view_vertical = 5;
// TBD: Generic sensor specific configuration.
//
}
//
// \brief The configuration settings for the Radar Sensor View to be provided
// by the environment simulation.
//
message RadarSensorViewConfiguration
{
// The ID of the sensor at host vehicle's mounting_position.
//
// This is the ID of the physical sensor, to be used in its detected
// features output; it is distinct from the ID of its virtual sensor.
//
// The ID is to be provided by the environment simulation, the sensor
// model is not in a position to provide a useful default value.
//
optional Identifier sensor_id = 1;
// The physical mounting position of the sensor (origin and orientation
// of the sensor coordinate system) given in vehicle coordinates [1].
// The physical position pertains to this detector individually, and
// governs the sensor-relative coordinates in features detected by this
// detector.
//
// \arg \b x-direction of sensor coordinate system: sensor viewing direction
// \arg \b z-direction of sensor coordinate system: sensor (up)
// \arg \b y-direction of sensor coordinate system: perpendicular to x and z
// right hand system
//
// \par Reference:
// [1] DIN Deutsches Institut fuer Normung e. V. (2013). <em>DIN ISO 8855 Strassenfahrzeuge - Fahrzeugdynamik und Fahrverhalten - Begriffe</em>. (DIN ISO 8855:2013-11). Berlin, Germany.
//
// \note The origin of vehicle's coordinate system in world frame is
// ( \c MovingObject::base . \c BaseMoving::position +
// Inverse_Rotation_yaw_pitch_roll( \c MovingObject::base . \c
// BaseMoving::orientation) * \c
// MovingObject::VehicleAttributes::bbcenter_to_rear) . The orientation of
// the vehicle's coordinate system is equal to the orientation of the
// vehicle's bounding box \c MovingObject::base . \c
// BaseMoving::orientation. \note A default position can be provided by the
// sensor model (e.g. to indicate the position the model was validated for),
// but this is optional; the environment simulation must provide a valid
// mounting position (based on the vehicle configuration) when setting the
// view configuration.
//
optional MountingPosition mounting_position = 2;
// The root mean squared error of the mounting position.
//
optional MountingPosition mounting_position_rmse = 3;
// Field of View in horizontal orientation of the physical sensor.
//
// Viewing range: [- \c #field_of_view_horizontal/2, \c
// #field_of_view_horizontal/2] azimuth in the sensor frame as defined in \c
// Spherical3d.
//
// Unit: rad
optional double field_of_view_horizontal = 4;
// Field of View in vertical orientation of the physical sensor.
//
// Viewing range: [- \c #field_of_view_vertical/2, \c
// #field_of_view_vertical/2] elevation in the sensor frame at zero azimuth
// as defined in \c Spherical3d.
//
// Unit: rad
optional double field_of_view_vertical = 5;
// Number of rays to cast across horizontal field of view (azimuth).
//
// \note This is a characteristic of the ray tracing engine of the
// environment simulation, not a direct characteristic of the sensor.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 number_of_rays_horizontal = 6;
// Number of rays to cast across vertical field of view (elevation).
//
// \note This is a characteristic of the ray tracing engine of the
// environment simulation, not a direct characteristic of the sensor.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 number_of_rays_vertical = 7;
// Maximum number of interactions to take into account.
//
// \note This is a characteristic of the ray tracing engine of the
// environment simulation, not a direct characteristic of the sensor.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 max_number_of_interactions = 8;
// Emitter Frequency.
//
// This information can be used by a ray tracing engine to calculate
// doppler shift information and take into account differences in
// refraction and reflection. For doppler shift calculations the
// sensor model can of course always provide a nominal frequency and
// adjust the resulting doppler shift information to actual frequency
// through frequency adjustments. For material and geometry interaction
// purposes the frequency is also relevant.
//
// Unit: Hz
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional double emitter_frequency = 9;
// This represents the TX antenna diagram
//
repeated AntennaDiagramEntry tx_antenna_diagram = 10;
// This represents the RX antenna diagram
//
repeated AntennaDiagramEntry rx_antenna_diagram = 11;
//
// \brief The radar antenna diagram.
//
// \note Rotation is defined analog Spherical3d
message AntennaDiagramEntry
{
// Horizontal deflection (azimuth) of entry in sensor/antenna
// coordinates.
//
// Unit: rad
optional double horizontal_angle = 1;
// Vertical deflection (elevation) of entry in sensor/antenna
// coordinates.
//
// Unit: rad
optional double vertical_angle = 2;
// Response of antenna at this point (positive dB is gain,
// negative dB is attenuation).
//
// Unit: dB
optional double response = 3;
}
}
//
// \brief The configuration settings for the Lidar Sensor View to be provided
// by the environment simulation.
//
message LidarSensorViewConfiguration
{
// The ID of the sensor at host vehicle's mounting_position.
//
// This is the ID of the physical sensor, to be used in its detected
// features output; it is distinct from the ID of its virtual sensor.
//
// The ID is to be provided by the environment simulation, the sensor
// model is not in a position to provide a useful default value.
//
optional Identifier sensor_id = 1;
// The physical mounting position of the sensor (origin and orientation
// of the sensor coordinate system) given in vehicle coordinates [1].
// The physical position pertains to this detector individually, and
// governs the sensor-relative coordinates in features detected by this
// detector.
//
// \arg \b x-direction of sensor coordinate system: sensor viewing direction
// \arg \b z-direction of sensor coordinate system: sensor (up)
// \arg \b y-direction of sensor coordinate system: perpendicular to x and z
// right hand system
//
// \par Reference:
// [1] DIN Deutsches Institut fuer Normung e. V. (2013). <em>DIN ISO 8855 Strassenfahrzeuge - Fahrzeugdynamik und Fahrverhalten - Begriffe</em>. (DIN ISO 8855:2013-11). Berlin, Germany.
//
// \note The origin of vehicle's coordinate system in world frame is
// ( \c MovingObject::base . \c BaseMoving::position +
// Inverse_Rotation_yaw_pitch_roll( \c MovingObject::base . \c
// BaseMoving::orientation) * \c
// MovingObject::VehicleAttributes::bbcenter_to_rear) . The orientation of
// the vehicle's coordinate system is equal to the orientation of the
// vehicle's bounding box \c MovingObject::base . \c
// BaseMoving::orientation. \note A default position can be provided by the
// sensor model (e.g. to indicate the position the model was validated for),
// but this is optional; the environment simulation must provide a valid
// mounting position (based on the vehicle configuration) when setting the
// view configuration.
//
optional MountingPosition mounting_position = 2;
// The root mean squared error of the mounting position.
//
optional MountingPosition mounting_position_rmse = 3;
// Field of View in horizontal orientation of the physical sensor.
//
// Viewing range: [- \c #field_of_view_horizontal/2, \c
// #field_of_view_horizontal/2] azimuth in the sensor frame as defined in \c
// Spherical3d.
//
// Unit: rad
optional double field_of_view_horizontal = 4;
// Field of View in vertical orientation of the physical sensor.
//
// Viewing range: [- \c #field_of_view_vertical/2, \c
// #field_of_view_vertical/2] elevation in the sensor frame at zero azimuth
// as defined in \c Spherical3d.
//
// Unit: rad
optional double field_of_view_vertical = 5;
// Number of rays to cast across horizontal field of view.
//
// \note This is a characteristic of the ray tracing engine of the
// environment simulation, not a direct characteristic of the sensor.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 number_of_rays_horizontal = 6;
// Number of rays to cast across vertical field of view.
//
// \note This is a characteristic of the ray tracing engine of the
// environment simulation, not a direct characteristic of the sensor.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 number_of_rays_vertical = 7;
// Maximum number of interactions to take into account.
//
// \note This is a characteristic of the ray tracing engine of the
// environment simulation, not a direct characteristic of the sensor.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 max_number_of_interactions = 8;
// Emitter Frequency.
//
// This information can be used by a ray tracing engine to calculate
// doppler shift information and take into account differences in
// refraction and reflection. For doppler shift calculations the
// sensor model can of course always provide a nominal frequency and
// adjust the resulting doppler shift information to actual frequency
// through frequency adjustments. For material and geometry interaction
// purposes the frequency is also relevant.
//
// Unit: Hz
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional double emitter_frequency = 9;
// Number of pixels in frame.
//
// This field includes the number of pixels in each frame
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 num_of_pixels = 10;
// Ray tracing data.
//
// The directions unit vectors describing the Lidar's raster transmission
// directions. Length is num_of_pixels \note data is in Lidar's coordinate
// system
//
repeated Vector3d directions = 11;
// Ray tracing data.
//
// The time offset in microseconds of every measurement from each frame
// timestamp. Length is num_of_pixels
//
repeated uint32 timings = 12;
}
//
// \brief The configuration settings for the Camera Sensor View to be provided
// by the environment simulation.
//
message CameraSensorViewConfiguration
{
// The ID of the sensor at host vehicle's mounting_position.
//
// This is the ID of the physical sensor, to be used in its detected
// features output; it is distinct from the ID of its virtual sensor.
//
// The ID is to be provided by the environment simulation, the sensor
// model is not in a position to provide a useful default value.
//
optional Identifier sensor_id = 1;
// The physical mounting position of the sensor (origin and orientation
// of the sensor coordinate system) given in vehicle coordinates [1].
// The physical position pertains to this detector individually, and
// governs the sensor-relative coordinates in features detected by this
// detector.
//
// \arg \b x-direction of sensor coordinate system: sensor viewing direction
// \arg \b z-direction of sensor coordinate system: sensor (up)
// \arg \b y-direction of sensor coordinate system: perpendicular to x and z
// right hand system
//
// \par Reference:
// [1] DIN Deutsches Institut fuer Normung e. V. (2013). <em>DIN ISO 8855 Strassenfahrzeuge - Fahrzeugdynamik und Fahrverhalten - Begriffe</em>. (DIN ISO 8855:2013-11). Berlin, Germany.
//
// \note The origin of vehicle's coordinate system in world frame is
// ( \c MovingObject::base . \c BaseMoving::position +
// Inverse_Rotation_yaw_pitch_roll( \c MovingObject::base . \c
// BaseMoving::orientation) * \c
// MovingObject::VehicleAttributes::bbcenter_to_rear) . The orientation of
// the vehicle's coordinate system is equal to the orientation of the
// vehicle's bounding box \c MovingObject::base . \c
// BaseMoving::orientation. \note A default position can be provided by the
// sensor model (e.g. to indicate the position the model was validated for),
// but this is optional; the environment simulation must provide a valid
// mounting position (based on the vehicle configuration) when setting the
// view configuration.
//
optional MountingPosition mounting_position = 2;
// The root mean squared error of the mounting position.
//
optional MountingPosition mounting_position_rmse = 3;
// Field of View in horizontal orientation of the physical sensor.
//
// Viewing range: [- \c #field_of_view_horizontal/2, \c
// #field_of_view_horizontal/2] azimuth in the sensor frame as defined in \c
// Spherical3d.
//
// Unit: rad
optional double field_of_view_horizontal = 4;
// Field of View in vertical orientation of the physical sensor.
//
// Viewing range: [- \c #field_of_view_vertical/2, \c
// #field_of_view_vertical/2] elevation in the sensor frame at zero azimuth
// as defined in \c Spherical3d.
//
// Unit: rad
optional double field_of_view_vertical = 5;
// Number of pixels to produce across horizontal field of view.
//
// \note This is a characteristic of the rendering engine of the
// environment simulation, not a direct characteristic of the sensor.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 number_of_pixels_horizontal = 6;
// Number of pixels to produce across horizontal field of view.
//
// \note This is a characteristic of the rendering engine of the
// environment simulation, not a direct characteristic of the sensor.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 number_of_pixels_vertical = 7;
// Format for image data (includes number, kind and format of channels).
//
// In the message provided by the sensor model, this field can
// be repeated and all values are acceptable to the model, with
// the most acceptable value being listed first, and the remaining
// values indicating alternatives in descending order of preference.
//
// In the message provided to the sensor model, this field must
// contain exactly one value, indicating the format of the image
// data being provided by the simulation environment - which must
// be one of the values the sensor model requested - or there
// must be no value, indicating that the simulation environment
// cannot provide image data in one of the requested formats.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
repeated ChannelFormat channel_format = 8;
// Number of samples per pixel.
//
// \note This is a characteristic of the ray tracing engine of the
// environment simulation, not a direct characteristic of the sensor.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 samples_per_pixel = 9;
// Maximum number of interactions to take into account.
//
// \note This is a characteristic of the ray tracing engine of the
// environment simulation, not a direct characteristic of the sensor.
//
// \rules
// is_greater_than_or_equal_to: 1
// \endrules
//
optional uint32 max_number_of_interactions = 10;
// In use-cases where a spectral ray-tracer is used, this message
// determines the range of the wavelength and its desired number
// of samples.
//
repeated WavelengthData wavelength_data = 11;
// Indicates if and how the the pixel data is ordered
//
// The default value (PIXEL_ORDER_DEFAULT) indicates standard image
// pixel order (left-to-right, top-to-bottom). The other values can
// be used to indicate/request mirroring (right to left or bottom to top).
//
// \note For rotations of the pixel data, use the camera coordinate system.
//
optional PixelOrder pixel_order = 12;
// Pixel layout
//
// Pixel layout documents the order of pixels in the \c image_data
// in CameraSensorView.
//
// \note this enum does not contain an entry to do mirroring upside down
// and left-to-right at the same time, because this is equivalent to a
// 180-degree rotation, which should be indicated in the sensor coordinate
// system.
//
enum PixelOrder
{
// Pixel data is not mirrored (Default).
// Pixels are ordered left-to-right, top-to-bottom.
//
PIXEL_ORDER_DEFAULT = 0;
// Known pixel order that is not supported by OSI.
// Consider proposing an additional format if using
// \c #PIXEL_ORDER_OTHER.
//
PIXEL_ORDER_OTHER = 1;
// Pixels are ordered right-to-left, top-to-bottom.
// Pixel data is mirrored along the vertical axis.
// The image is mirrored left-to-right.
//
PIXEL_ORDER_RIGHT_LEFT_TOP_BOTTOM = 2;
// Pixels are ordered left-to-right, bottom-to-top.
// Pixel data is mirrored along the horizontal axis.
// The image is mirrored top-to-bottom.
//
PIXEL_ORDER_LEFT_RIGHT_BOTTOM_TOP = 3;
}
// Channel format.
//
enum ChannelFormat
{
// Type of channel format is unknown (must not be used).
//
CHANNEL_FORMAT_UNKNOWN = 0;
// Unspecified but known channel format.
// Consider proposing an additional format if using
// \c #CHANNEL_FORMAT_OTHER.
//
CHANNEL_FORMAT_OTHER = 1;
// Single Luminance Channel UINT8 Linear.
//
CHANNEL_FORMAT_MONO_U8_LIN = 2;
// Single Luminance Channel UINT16 Linear.
//
CHANNEL_FORMAT_MONO_U16_LIN = 3;
// Single Luminance Channel UINT32 Linear.
//
CHANNEL_FORMAT_MONO_U32_LIN = 4;
// Single Luminance Channel Single Precision FP Linear.
//
CHANNEL_FORMAT_MONO_F32_LIN = 5;
// Packed RGB Channels (no padding) UINT8 Linear.
//
CHANNEL_FORMAT_RGB_U8_LIN = 6;
// Packed RGB Channels (no padding) UINT16 Linear.
//
CHANNEL_FORMAT_RGB_U16_LIN = 7;
// Packed RGB Channels (no padding) UINT32 Linear.
//
CHANNEL_FORMAT_RGB_U32_LIN = 8;
// Packed RGB Channels (no padding) Single Precision FP Linear.
//
CHANNEL_FORMAT_RGB_F32_LIN = 9;
// Bayer BGGR Channels UINT8 FP Linear.
//
CHANNEL_FORMAT_BAYER_BGGR_U8_LIN = 10;
// Bayer BGGR Channels UINT16 FP Linear.
//
CHANNEL_FORMAT_BAYER_BGGR_U16_LIN = 11;
// Bayer BGGR Channels UINT32 FP Linear.
//
CHANNEL_FORMAT_BAYER_BGGR_U32_LIN = 12;
// Bayer BGGR Channels Single Precision FP Linear.
//
CHANNEL_FORMAT_BAYER_BGGR_F32_LIN = 13;
// Bayer RGGB Channels UINT8 FP Linear.
//
CHANNEL_FORMAT_BAYER_RGGB_U8_LIN = 14;
// Bayer RGGB Channels UINT16 FP Linear.
//
CHANNEL_FORMAT_BAYER_RGGB_U16_LIN = 15;
// Bayer RGGB Channels UINT32 FP Linear.
//
CHANNEL_FORMAT_BAYER_RGGB_U32_LIN = 16;
// Bayer RGGB Channels Single Precision FP Linear.
//
CHANNEL_FORMAT_BAYER_RGGB_F32_LIN = 17;
// Red Clear Clear Clear Channels UINT8 FP Linear.
//
CHANNEL_FORMAT_RCCC_U8_LIN = 18;
// Red Clear Clear Clear Channels UINT16 FP Linear.
//
CHANNEL_FORMAT_RCCC_U16_LIN = 19;
// Red Clear Clear Clear Channels UINT32 FP Linear.
//
CHANNEL_FORMAT_RCCC_U32_LIN = 20;
// Red Clear Clear Clear Channels Single Precision FP Linear.
//
CHANNEL_FORMAT_RCCC_F32_LIN = 21;
// Red Clear Clear Blue Channels UINT8 FP Linear.
//
CHANNEL_FORMAT_RCCB_U8_LIN = 22;
// Red Clear Clear Blue Channels UINT16 FP Linear.
//
CHANNEL_FORMAT_RCCB_U16_LIN = 23;
// Red Clear Clear Blue Channels UINT32 FP Linear.
//
CHANNEL_FORMAT_RCCB_U32_LIN = 24;
// Red Clear Clear Blue Channels Single Precision FP Linear.
//
CHANNEL_FORMAT_RCCB_F32_LIN = 25;
}
}
//
// \brief The configuration settings for the Ultrasonic Sensor View to be
// provided by the environment simulation.
//
message UltrasonicSensorViewConfiguration
{
// The ID of the sensor at host vehicle's mounting_position.
//
// This is the ID of the physical sensor, to be used in its detected
// features output; it is distinct from the ID of its virtual sensor.
//
// The ID is to be provided by the environment simulation, the sensor
// model is not in a position to provide a useful default value.
//
optional Identifier sensor_id = 1;
// The physical mounting position of the sensor (origin and orientation
// of the sensor coordinate system) given in vehicle coordinates [1].
// The physical position pertains to this detector individually, and
// governs the sensor-relative coordinates in features detected by this
// detector.
//
// \arg \b x-direction of sensor coordinate system: sensor viewing direction
// \arg \b z-direction of sensor coordinate system: sensor (up)
// \arg \b y-direction of sensor coordinate system: perpendicular to x and z
// right hand system
//
// \par Reference:
// [1] DIN Deutsches Institut fuer Normung e. V. (2013). <em>DIN ISO 8855 Strassenfahrzeuge - Fahrzeugdynamik und Fahrverhalten - Begriffe</em>. (DIN ISO 8855:2013-11). Berlin, Germany.
//
// \note The origin of vehicle's coordinate system in world frame is
// ( \c MovingObject::base . \c BaseMoving::position +
// Inverse_Rotation_yaw_pitch_roll( \c MovingObject::base . \c
// BaseMoving::orientation) * \c
// MovingObject::VehicleAttributes::bbcenter_to_rear) . The orientation of
// the vehicle's coordinate system is equal to the orientation of the
// vehicle's bounding box \c MovingObject::base . \c
// BaseMoving::orientation. \note A default position can be provided by the
// sensor model (e.g. to indicate the position the model was validated for),
// but this is optional; the environment simulation must provide a valid
// mounting position (based on the vehicle configuration) when setting the
// view configuration.
//
optional MountingPosition mounting_position = 2;
// The root mean squared error of the mounting position.
//
optional MountingPosition mounting_position_rmse = 3;
// Field of View in horizontal orientation of the physical sensor.
//
// Viewing range: [- \c #field_of_view_horizontal/2, \c
// #field_of_view_horizontal/2] azimuth in the sensor frame as defined in \c
// Spherical3d.
//
// Unit: rad
optional double field_of_view_horizontal = 4;
// Field of View in vertical orientation of the physical sensor.
//
// Viewing range: [- \c #field_of_view_vertical/2, \c
// #field_of_view_vertical/2] elevation in the sensor frame at zero azimuth
// as defined in \c Spherical3d.
//
// Unit: rad
optional double field_of_view_vertical = 5;
// TBD: Ultrasonic Sensor specific configuration.
//
}