-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathfit_video.py
394 lines (341 loc) · 16.3 KB
/
fit_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from facenet_pytorch import MTCNN
from core.options import VideoFittingOptions
from PIL import Image
import cv2
import face_alignment
import numpy as np
from core import get_recon_model
import os
import torch
import core.utils as utils
from tqdm import tqdm
import core.losses as losses
import shutil
import random
import glob
import pickle
from multiprocessing import Process, set_start_method
from core.fitting_dataset import FittingDataset
def fit_coeffs(args, device, worker_ind):
id_coeff = np.load(args.id_npy_path)
tex_coeff = np.load(args.tex_npy_path)
recon_model = get_recon_model(model=args.recon_model,
device=device,
batch_size=1,
img_size=args.tar_size)
recon_model.init_coeff_tensors(id_coeff=id_coeff, tex_coeff=tex_coeff)
fitting_dataset = FittingDataset(
args.tmp_face_folder, args.lm_pkl_path,
worker_num=args.nworkers, worker_ind=worker_ind)
fitting_data_loader = torch.utils.data.DataLoader(dataset=fitting_dataset,
batch_size=1,
shuffle=False,
num_workers=1,
drop_last=False)
lm_weights = utils.get_lm_weights(device)
res_dict = {}
num_imgs = len(fitting_dataset)
last_rot = None
last_trans = None
for batch_ind, cur_batch in tqdm(enumerate(fitting_data_loader)):
print('fitting %d/%d' % (batch_ind, num_imgs))
lms, img, img_keys = cur_batch
lms = lms.to(device)
imgs = img.to(device)
rigid_optimizer = torch.optim.Adam([recon_model.get_rot_tensor(),
recon_model.get_trans_tensor()],
lr=args.rf_lr)
num_iters = args.first_rf_iters if batch_ind == 0 else args.rest_rf_iters
for i in range(num_iters):
rigid_optimizer.zero_grad()
pred_dict = recon_model(
recon_model.get_packed_tensors(), render=False)
lm_loss_val = losses.lm_loss(
pred_dict['lms_proj'], lms, lm_weights, img_size=args.tar_size)
total_loss = args.lm_loss_w * lm_loss_val
total_loss.backward()
rigid_optimizer.step()
print('done rigid fitting. lm_loss: %f' %
lm_loss_val.detach().cpu().numpy())
print('start non-rigid fitting')
nonrigid_optimizer = torch.optim.Adam(
[recon_model.get_id_tensor(), recon_model.get_exp_tensor(),
recon_model.get_gamma_tensor(), recon_model.get_tex_tensor(),
recon_model.get_rot_tensor(), recon_model.get_trans_tensor()],
lr=args.nrf_lr)
num_iters = args.first_nrf_iters if batch_ind == 0 else args.rest_nrf_iters
for i in range(num_iters):
nonrigid_optimizer.zero_grad()
pred_dict = recon_model(
recon_model.get_packed_tensors(), render=True)
rendered_img = pred_dict['rendered_img']
lms_proj = pred_dict['lms_proj']
face_texture = pred_dict['face_texture']
mask = rendered_img[:, :, :, 3].detach()
photo_loss_val = losses.photo_loss(
rendered_img[:, :, :, :3], imgs, mask > 0)
lm_loss_val = losses.lm_loss(lms_proj, lms, lm_weights,
img_size=args.tar_size)
id_reg_loss = losses.get_l2(recon_model.get_id_tensor())
exp_reg_loss = losses.get_l2(recon_model.get_exp_tensor())
tex_reg_loss = losses.get_l2(recon_model.get_tex_tensor())
tex_loss_val = losses.reflectance_loss(
face_texture, recon_model.get_skinmask())
loss = lm_loss_val*args.lm_loss_w + \
id_reg_loss*args.id_reg_w + \
exp_reg_loss*args.exp_reg_w + \
tex_reg_loss*args.tex_reg_w + \
tex_loss_val*args.tex_w + \
photo_loss_val*args.rgb_loss_w
# regularizers for rotation and translation
if last_rot is not None:
rot_diff = recon_model.get_rot_tensor() - last_rot
trans_diff = recon_model.get_trans_tensor() - last_trans
rot_reg = torch.square(rot_diff).sum()
trans_reg = torch.square(trans_diff).sum()
loss += rot_reg * args.rot_reg_w
loss += trans_reg * args.trans_reg_w
loss.backward()
nonrigid_optimizer.step()
loss_str = ''
loss_str += 'lm_loss: %f\t' % lm_loss_val.detach().cpu().numpy()
loss_str += 'photo_loss: %f\t' % photo_loss_val.detach().cpu().numpy()
loss_str += 'tex_loss: %f\t' % tex_loss_val.detach().cpu().numpy()
loss_str += 'id_reg_loss: %f\t' % id_reg_loss.detach().cpu().numpy()
loss_str += 'exp_reg_loss: %f\t' % exp_reg_loss.detach().cpu().numpy()
loss_str += 'tex_reg_loss: %f\t' % tex_reg_loss.detach().cpu().numpy()
if last_rot is not None:
loss_str += 'rot_reg_loss: %f\t' % rot_reg.detach().cpu().numpy()
loss_str += 'trans_reg_loss: %f\t' % trans_reg.detach().cpu().numpy()
print('done non rigid fitting.', loss_str)
if last_rot is None:
last_rot = recon_model.get_rot_tensor().detach().clone()
last_trans = recon_model.get_trans_tensor().detach().clone()
cur_k = img_keys[0].numpy().item()
cur_rot = recon_model.get_rot_tensor().detach().cpu().numpy().reshape(1, -1)
cur_trans = recon_model.get_trans_tensor().detach().cpu().numpy().reshape(1, -1)
cur_gamma = recon_model.get_gamma_tensor().detach().cpu().numpy().reshape(1, -1)
cur_exp = recon_model.get_exp_tensor().detach().cpu().numpy().reshape(1, -1)
res_dict[cur_k] = {'rot': cur_rot,
'trans': cur_trans,
'gamma': cur_gamma,
'exp': cur_exp}
output_dict = {'id': id_coeff, 'tex': tex_coeff, 'fitting_res': res_dict}
with open(os.path.join(args.cache_folder, '%d_fitting.pkl' % worker_ind), 'wb') as f:
pickle.dump(output_dict, f)
def gen_composed_video(args, device):
with open(args.fitting_pkl_path, 'rb') as f:
fitting_dict = pickle.load(f)
id_tensor = torch.tensor(fitting_dict['id'], device=device)
tex_tensor = torch.tensor(fitting_dict['tex'], device=device)
with open(args.v_info_path, 'rb') as f:
video_info = pickle.load(f)
bbox = video_info['bbox']
face_w = bbox[2] - bbox[0]
face_h = bbox[3] - bbox[1]
res_dict = fitting_dict['fitting_res']
recon_model = get_recon_model(model=args.recon_model,
device=device,
batch_size=1,
img_size=args.tar_size)
keys = list(res_dict.keys())
keys = sorted(keys)
video = cv2.VideoWriter(args.out_video_path, cv2.VideoWriter_fourcc(
*'XVID'), video_info['fps'], (video_info['frame_w'], video_info['frame_h']))
for k in tqdm(keys):
orig_frame = cv2.imread(os.path.join(
args.tmp_frame_folder, str(k)+'.png'))
cur_rot_tensor = torch.tensor(res_dict[k]['rot'], device=device)
cur_trans_tensor = torch.tensor(res_dict[k]['trans'], device=device)
cur_gamma_tensor = torch.tensor(res_dict[k]['gamma'], device=device)
cur_exp_tensor = torch.tensor(res_dict[k]['exp'], device=device)
pred_dict = recon_model(recon_model.merge_coeffs(
id_tensor, cur_exp_tensor, tex_tensor,
cur_rot_tensor, cur_gamma_tensor, cur_trans_tensor), render=True)
rendered_img = pred_dict['rendered_img']
rendered_img = rendered_img.cpu().numpy().squeeze()
out_img = rendered_img[:, :, :3].astype(np.uint8)
out_mask = (rendered_img[:, :, 3] > 0).astype(np.uint8)
resized_out_img = cv2.resize(out_img, (face_w, face_h))[:, :, ::-1]
resized_mask = cv2.resize(
out_mask, (face_w, face_h), cv2.INTER_NEAREST)[..., None]
composed_face = orig_frame[bbox[1]:bbox[3], bbox[0]:bbox[2], :] * \
(1 - resized_mask) + resized_out_img * resized_mask
orig_frame[bbox[1]:bbox[3], bbox[0]:bbox[2], :] = composed_face
video.write(orig_frame)
video.release()
print('video saved in %s' % args.out_video_path)
def fit_shape(args, device):
recon_model = get_recon_model(model=args.recon_model,
device=device,
batch_size=args.nframes_shape,
img_size=args.tar_size)
fitting_dataset = FittingDataset(
args.tmp_face_folder, args.lm_pkl_path)
fitting_data_loader = torch.utils.data.DataLoader(dataset=fitting_dataset,
batch_size=args.nframes_shape,
shuffle=True,
num_workers=1,
drop_last=False)
for cur_batch in fitting_data_loader:
lms, img, img_keys = cur_batch
lms = lms.to(device)
imgs = img.to(device)
break
lm_weights = utils.get_lm_weights(device)
print('start rigid fitting')
rigid_optimizer = torch.optim.Adam([recon_model.get_rot_tensor(),
recon_model.get_trans_tensor()],
lr=args.rf_lr)
for i in tqdm(range(args.first_rf_iters)):
rigid_optimizer.zero_grad()
pred_dict = recon_model(recon_model.get_packed_tensors(), render=False)
lm_loss_val = losses.lm_loss(
pred_dict['lms_proj'], lms, lm_weights, img_size=args.tar_size)
total_loss = args.lm_loss_w * lm_loss_val
total_loss.backward()
rigid_optimizer.step()
print('done rigid fitting. lm_loss: %f' %
lm_loss_val.detach().cpu().numpy())
print('start non-rigid fitting')
nonrigid_optimizer = torch.optim.Adam(
[recon_model.get_id_tensor(), recon_model.get_exp_tensor(),
recon_model.get_gamma_tensor(), recon_model.get_tex_tensor(),
recon_model.get_rot_tensor(), recon_model.get_trans_tensor()],
lr=args.nrf_lr)
for i in tqdm(range(args.first_nrf_iters)):
nonrigid_optimizer.zero_grad()
pred_dict = recon_model(recon_model.get_packed_tensors(), render=True)
rendered_img = pred_dict['rendered_img']
lms_proj = pred_dict['lms_proj']
face_texture = pred_dict['face_texture']
mask = rendered_img[:, :, :, 3].detach()
photo_loss_val = losses.photo_loss(
rendered_img[:, :, :, :3], imgs, mask > 0)
lm_loss_val = losses.lm_loss(lms_proj, lms, lm_weights,
img_size=args.tar_size)
id_reg_loss = losses.get_l2(recon_model.get_id_tensor())
exp_reg_loss = losses.get_l2(recon_model.get_exp_tensor())
tex_reg_loss = losses.get_l2(recon_model.get_tex_tensor())
tex_loss_val = losses.reflectance_loss(
face_texture, recon_model.get_skinmask())
loss = lm_loss_val*args.lm_loss_w + \
id_reg_loss*args.id_reg_w + \
exp_reg_loss*args.exp_reg_w + \
tex_reg_loss*args.tex_reg_w + \
tex_loss_val*args.tex_w + \
photo_loss_val*args.rgb_loss_w
loss.backward()
nonrigid_optimizer.step()
loss_str = ''
loss_str += 'lm_loss: %f\t' % lm_loss_val.detach().cpu().numpy()
loss_str += 'photo_loss: %f\t' % photo_loss_val.detach().cpu().numpy()
loss_str += 'tex_loss: %f\t' % tex_loss_val.detach().cpu().numpy()
loss_str += 'id_reg_loss: %f\t' % id_reg_loss.detach().cpu().numpy()
loss_str += 'exp_reg_loss: %f\t' % exp_reg_loss.detach().cpu().numpy()
loss_str += 'tex_reg_loss: %f\t' % tex_reg_loss.detach().cpu().numpy()
print('done non rigid fitting.', loss_str)
np.save(args.id_npy_path, recon_model.get_id_tensor(
).detach().cpu().numpy().reshape(1, -1))
np.save(args.tex_npy_path, recon_model.get_tex_tensor(
).detach().cpu().numpy().reshape(1, -1))
def process_video(args, device):
mtcnn = MTCNN(device=device, select_largest=False)
fa = face_alignment.FaceAlignment(
face_alignment.LandmarksType._3D, flip_input=True, device=device)
frame_ind = 0
cap = cv2.VideoCapture(args.v_path)
fps = cap.get(cv2.CAP_PROP_FPS)
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
ret, frame = cap.read()
if ret is False:
print('error reading the video file %s' % args.v_path)
return
orig_h, orig_w = frame.shape[:2]
bboxes, probs = mtcnn.detect(frame)
if bboxes is None:
print('no face detected')
else:
bbox = utils.pad_bbox(bboxes[0], (orig_w, orig_h), args.padding_ratio)
face_w = bbox[2] - bbox[0]
face_h = bbox[3] - bbox[1]
assert face_w == face_h
print('A face is detected. l: %d, t: %d, r: %d, b: %d'
% (bbox[0], bbox[1], bbox[2], bbox[3]))
lm_dict = {}
while(cap.isOpened()):
face_img = frame[bbox[1]:bbox[3], bbox[0]:bbox[2], :]
resized_face_img = cv2.resize(face_img, (args.tar_size, args.tar_size))
lms = fa.get_landmarks_from_image(resized_face_img)[0]
lms = lms[:, :2]
lm_dict[frame_ind] = lms
face_out_path = os.path.join(
args.tmp_face_folder, '%d.png' % frame_ind)
frame_out_path = os.path.join(
args.tmp_frame_folder, '%d.png' % frame_ind)
cv2.imwrite(face_out_path, resized_face_img)
cv2.imwrite(frame_out_path, frame)
if frame_ind % 100 == 0:
print('processing %d/%d' % (frame_ind, num_frames))
frame_ind += 1
ret, frame = cap.read()
if ret is False:
break
with open(args.lm_pkl_path, 'wb') as f:
pickle.dump(lm_dict, f)
print('done processing the video. Got %d frames' % frame_ind)
cap.release()
v_inf_dict = {'fps': fps, 'frame_w': orig_w,
'frame_h': orig_h, 'bbox': bbox}
with open(args.v_info_path, 'wb') as f:
pickle.dump(v_inf_dict, f)
def merge_dict(args):
final_dict = {}
for i in range(args.nworkers):
with open(os.path.join(args.cache_folder, '%d_fitting.pkl' % i), 'rb') as f:
tmp_dict = pickle.load(f)
if i == 0:
final_dict['id'] = tmp_dict['id']
final_dict['tex'] = tmp_dict['tex']
final_dict['fitting_res'] = {}
final_dict['fitting_res'].update(tmp_dict['fitting_res'])
with open(args.fitting_pkl_path, 'wb') as f:
pickle.dump(final_dict, f)
if __name__ == '__main__':
args = VideoFittingOptions()
args = args.parse()
args.devices = ['cuda:%d' % i for i in range(args.ngpus)]
# to avoid mult-processing runtime error
set_start_method('spawn')
# remove cache files and create new folders
if os.path.exists(args.cache_folder):
shutil.rmtree(args.cache_folder)
args.tmp_face_folder = os.path.join(args.cache_folder, 'faces')
args.tmp_frame_folder = os.path.join(args.cache_folder, 'frames')
args.lm_pkl_path = os.path.join(args.cache_folder, 'lms.pkl')
args.id_npy_path = os.path.join(args.cache_folder, 'id.npy')
args.tex_npy_path = os.path.join(args.cache_folder, 'tex.npy')
args.v_info_path = os.path.join(args.cache_folder, 'v_info.pkl')
args.fitting_pkl_path = os.path.join(
args.res_folder, os.path.basename(args.v_path)[:-4]+'_fitting_res.pkl')
args.out_video_path = os.path.join(
args.res_folder, os.path.basename(args.v_path)[:-4]+'_recon_video.avi')
utils.mymkdirs(args.cache_folder)
utils.mymkdirs(args.tmp_face_folder)
utils.mymkdirs(args.res_folder)
utils.mymkdirs(args.tmp_frame_folder)
# extract frames and faces and get landmarks
process_video(args, args.devices[0])
fit_shape(args, args.devices[0])
# fit frames using Process
processes = []
for i in range(args.nworkers):
p = Process(target=fit_coeffs, args=(
args, args.devices[i % args.ngpus], i))
p.start()
processes.append(p)
for cur_p in processes:
cur_p.join()
# merge dict
merge_dict(args)
gen_composed_video(args, args.devices[0])