This repository contains the implementation of Audio Deepfake Detection method proposed in the paper -
Marcella Astrid, Enjie Ghorbel, and Djamila Aouada, Targeted Augmented Data for Audio Deepfake Detection, EUSIPCO 2024.
Links: [PDF]
Create conda environment with package inside the package list
conda create -n myenv --file package-list.txt
-
Download ASVspoof2019 dataset here.
-
Store the dataset. Directory paths from the current project directory includes:
ASVspoof2019/LA/ASVspoof2019_LA_asv_protocols/ ASVspoof2019/LA/ASVspoof2019_LA_asv_scores/ ASVspoof2019/LA/ASVspoof2019_LA_asv_protocols/ ASVspoof2019/LA/ASVspoof2019_LA_dev/ ASVspoof2019/LA/ASVspoof2019_LA_eval/ ASVspoof2019/LA/ASVspoof2019_LA_train/
For rawnet2 training with our method
python main.py --atk_prob 0.7 --atk_epsmax 0.7 --atk_epsmin 0.01
For aasist training with our method
python main.py --atk_prob 0.5 --atk_epsmax 0.5 --atk_epsmin 0.01 --batch_size 16 --model_config config/aasist.yaml
For untargeted augmentation (gaussian noise)
python main.py --noise_prob 0.7 --noise_std_min 0.01 --noise_std_max 1
For targeting confident fake prediction
python main.py --atk_prob 0.3 --atk_epsmax 0.7 --atk_epsmin 0.01 --atk_type fake
For rawnet2 training without augmentation
python main.py
For aasist training without augmentation
python main.py --batch_size 16 --model_config config/aasist.yaml
For rawnet2 with our method (weight file)
python main.py --test log_tmp/v1_LA_100_32_0.0001_atk0.7_ate0.01-0.7_trial1/model/model_best_epoch100.pth.tar
python test.py --folder test_results/v1_LA_100_32_0.0001_atk0.7_ate0.01-0.7_trial1/model_best_epoch100
For aasist with our method (weight file)
python main.py --test log_tmp/v1_LA_100_16_0.0001_atk0.5_ate0.01-0.5_aasist/model/model_best_epoch100.pth.tar --batch_size 16 --model_config config/aasist.yaml
python test.py --folder test_results/v1_LA_100_16_0.0001_atk0.5_ate0.01-0.5_aasist/model_best_epoch100
Check the results in output file, e.g., for aasist case, at test_results/v1_LA_100_16_0.0001_atk0.5_ate0.01-0.5_aasist/model_best_epoch100/output.txt
If you use the code, please cite the paper
@InProceedings{astrid2024targeted,
author = "Astrid, Marcella and Ghorbel, Enjie and Aouada, Djamila",
title = "Targeted Augmented Data for Audio Deepfake Detection",
booktitle = "32nd European Signal Processing Conference (EUSIPCO)",
year = "2024",
}
Thanks to the code available at https://github.com/clovaai/aasist, https://github.com/asvspoof-challenge/2021, https://github.com/eurecom-asp/RawGAT-ST-antispoofing.