-
Notifications
You must be signed in to change notification settings - Fork 0
/
p4_KLT_track.py
60 lines (50 loc) · 1.76 KB
/
p4_KLT_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import cv2
import numpy as np
# params for ShiTomasi corner detection
maxco = 600
feature_params = dict(maxCorners=maxco,
qualityLevel=0.05,
minDistance=5,
blockSize=5)
# Parameters for lucas kanade optical flow
lk_params = dict(winSize=(8, 8),
maxLevel=2,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
# Take first frame and find corners in it
old_frame = cv2.imread(f"hotel/hotel.seq0.png")
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)
color = np.random.randint(0, 255, (p0.shape[0], 3))
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
t_i = 1
t_f = 40
for i in range(t_i, t_f):
frame = cv2.imread(f"hotel/hotel.seq{i}.png")
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st == 1]
good_old = p0[st == 1]
a = (st == 1).squeeze()
color = color[a]
# draw the tracks
for e, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
mask = cv2.line(mask, (a, b), (c, d), color[e].tolist(), 2)
frame = cv2.circle(frame, (a, b), 5, color[e].tolist(), -1)
img = cv2.add(frame, mask)
cv2.imshow('frame', img)
k = cv2.waitKey(1000) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1, 1, 2)
# cv2.waitKey(100)
print(p0.shape)
cv2.waitKey(0)
cv2.destroyAllWindows()