-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_building.py
104 lines (73 loc) · 2.79 KB
/
model_building.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 12 10:30:10 2020
@author: Ken
"""
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
df = pd.read_csv('eda_data.csv')
# choose relevant columns
df.columns
df_model = df[['avg_salary','Rating','Size','Type of ownership','Industry','Sector','Revenue','num_comp','hourly','employer_provided',
'job_state','same_state','age','python_yn','spark','aws','excel','job_simp','seniority','desc_len']]
# get dummy data
df_dum = pd.get_dummies(df_model)
# train test split
from sklearn.model_selection import train_test_split
X = df_dum.drop('avg_salary', axis =1)
y = df_dum.avg_salary.values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# multiple linear regression
import statsmodels.api as sm
X_sm = X = sm.add_constant(X)
model = sm.OLS(y,X_sm)
model.fit().summary()
from sklearn.linear_model import LinearRegression, Lasso
from sklearn.model_selection import cross_val_score
lm = LinearRegression()
lm.fit(X_train, y_train)
np.mean(cross_val_score(lm,X_train,y_train, scoring = 'neg_mean_absolute_error', cv= 3))
# lasso regression
lm_l = Lasso(alpha=.13)
lm_l.fit(X_train,y_train)
np.mean(cross_val_score(lm_l,X_train,y_train, scoring = 'neg_mean_absolute_error', cv= 3))
alpha = []
error = []
for i in range(1,100):
alpha.append(i/100)
lml = Lasso(alpha=(i/100))
error.append(np.mean(cross_val_score(lml,X_train,y_train, scoring = 'neg_mean_absolute_error', cv= 3)))
plt.plot(alpha,error)
err = tuple(zip(alpha,error))
df_err = pd.DataFrame(err, columns = ['alpha','error'])
df_err[df_err.error == max(df_err.error)]
# random forest
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()
np.mean(cross_val_score(rf,X_train,y_train,scoring = 'neg_mean_absolute_error', cv= 3))
# tune models GridsearchCV
from sklearn.model_selection import GridSearchCV
parameters = {'n_estimators':range(10,300,10), 'criterion':('mse','mae'), 'max_features':('auto','sqrt','log2')}
gs = GridSearchCV(rf,parameters,scoring='neg_mean_absolute_error',cv=3)
gs.fit(X_train,y_train)
gs.best_score_
gs.best_estimator_
# test ensembles
tpred_lm = lm.predict(X_test)
tpred_lml = lm_l.predict(X_test)
tpred_rf = gs.best_estimator_.predict(X_test)
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test,tpred_lm)
mean_absolute_error(y_test,tpred_lml)
mean_absolute_error(y_test,tpred_rf)
mean_absolute_error(y_test,(tpred_lm+tpred_rf)/2)
import pickle
pickl = {'model': gs.best_estimator_}
pickle.dump( pickl, open( 'model_file' + ".p", "wb" ) )
file_name = "model_file.p"
with open(file_name, 'rb') as pickled:
data = pickle.load(pickled)
model = data['model']
model.predict(np.array(list(X_test.iloc[1,:])).reshape(1,-1))[0]
list(X_test.iloc[1,:])