forked from rasbt/machine-learning-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch16-part3-bert.py
379 lines (207 loc) · 8.45 KB
/
ch16-part3-bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# coding: utf-8
import sys
from python_environment_check import check_packages
import gzip
import shutil
import time
import pandas as pd
import requests
import torch
import torch.nn.functional as F
import torchtext
import transformers
from transformers import DistilBertTokenizerFast
from transformers import DistilBertForSequenceClassification
from transformers import Trainer, TrainingArguments
from datasets import load_metric
import numpy as np
# # Machine Learning with PyTorch and Scikit-Learn
# # -- Code Examples
# ## Package version checks
# Add folder to path in order to load from the check_packages.py script:
sys.path.insert(0, '..')
# Check recommended package versions:
d = {
'pandas': '1.3.2',
'torch': '1.9.0',
'torchtext': '0.11.0',
'datasets': '1.11.0',
'transformers': '4.9.1',
}
check_packages(d)
# # Chapter 16: Transformers – Improving Natural Language Processing with Attention Mechanisms (Part 3/3)
# **Outline**
#
# - [Fine-tuning a BERT model in PyTorch](#Fine-tuning-a-BERT-model-in-PyTorch)
# - [Loading the IMDb movie review dataset](#Loading-the-IMDb-movie-review-dataset)
# - [Tokenizing the dataset](#Tokenizing-the-dataset)
# - [Loading and fine-tuning a pre-trained BERT model](#[Loading-and-fine-tuning-a-pre-trained-BERT-model)
# - [Fine-tuning a transformer more conveniently using the Trainer API](#Fine-tuning-a-transformer-more-conveniently-using-the-Trainer-API)
# - [Summary](#Summary)
# ---
#
# Quote from https://huggingface.co/transformers/custom_datasets.html:
#
# > DistilBERT is a small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less parameters than bert-base-uncased , runs 60% faster while preserving over 95% of BERT's performances as measured on the GLUE language understanding benchmark.
#
# ---
# ## Fine-tuning a BERT model in PyTorch
# ### Loading the IMDb movie review dataset
#
# **General Settings**
torch.backends.cudnn.deterministic = True
RANDOM_SEED = 123
torch.manual_seed(RANDOM_SEED)
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
NUM_EPOCHS = 3
# **Download Dataset**
# The following cells will download the IMDB movie review dataset (http://ai.stanford.edu/~amaas/data/sentiment/) for positive-negative sentiment classification in as CSV-formatted file:
url = "https://github.com/rasbt/machine-learning-book/raw/main/ch08/movie_data.csv.gz"
filename = url.split("/")[-1]
with open(filename, "wb") as f:
r = requests.get(url)
f.write(r.content)
with gzip.open('movie_data.csv.gz', 'rb') as f_in:
with open('movie_data.csv', 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
# Check that the dataset looks okay:
df = pd.read_csv('movie_data.csv')
df.head()
df.shape
# **Split Dataset into Train/Validation/Test**
train_texts = df.iloc[:35000]['review'].values
train_labels = df.iloc[:35000]['sentiment'].values
valid_texts = df.iloc[35000:40000]['review'].values
valid_labels = df.iloc[35000:40000]['sentiment'].values
test_texts = df.iloc[40000:]['review'].values
test_labels = df.iloc[40000:]['sentiment'].values
# ## Tokenizing the dataset
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
train_encodings = tokenizer(list(train_texts), truncation=True, padding=True)
valid_encodings = tokenizer(list(valid_texts), truncation=True, padding=True)
test_encodings = tokenizer(list(test_texts), truncation=True, padding=True)
train_encodings[0]
# **Dataset Class and Loaders**
class IMDbDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
train_dataset = IMDbDataset(train_encodings, train_labels)
valid_dataset = IMDbDataset(valid_encodings, valid_labels)
test_dataset = IMDbDataset(test_encodings, test_labels)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=16, shuffle=False)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False)
# ## Loading and fine-tuning a pre-trained BERT model
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
model.to(DEVICE)
model.train()
optim = torch.optim.Adam(model.parameters(), lr=5e-5)
# **Train Model -- Manual Training Loop**
def compute_accuracy(model, data_loader, device):
with torch.no_grad():
correct_pred, num_examples = 0, 0
for batch_idx, batch in enumerate(data_loader):
### Prepare data
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask)
logits = outputs['logits']
predicted_labels = torch.argmax(logits, 1)
num_examples += labels.size(0)
correct_pred += (predicted_labels == labels).sum()
return correct_pred.float()/num_examples * 100
start_time = time.time()
for epoch in range(NUM_EPOCHS):
model.train()
for batch_idx, batch in enumerate(train_loader):
### Prepare data
input_ids = batch['input_ids'].to(DEVICE)
attention_mask = batch['attention_mask'].to(DEVICE)
labels = batch['labels'].to(DEVICE)
### Forward
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss, logits = outputs['loss'], outputs['logits']
### Backward
optim.zero_grad()
loss.backward()
optim.step()
### Logging
if not batch_idx % 250:
print (f'Epoch: {epoch+1:04d}/{NUM_EPOCHS:04d} | '
f'Batch {batch_idx:04d}/{len(train_loader):04d} | '
f'Loss: {loss:.4f}')
model.eval()
with torch.set_grad_enabled(False):
print(f'Training accuracy: '
f'{compute_accuracy(model, train_loader, DEVICE):.2f}%'
f'\nValid accuracy: '
f'{compute_accuracy(model, valid_loader, DEVICE):.2f}%')
print(f'Time elapsed: {(time.time() - start_time)/60:.2f} min')
print(f'Total Training Time: {(time.time() - start_time)/60:.2f} min')
print(f'Test accuracy: {compute_accuracy(model, test_loader, DEVICE):.2f}%')
del model # free memory
# ### Fine-tuning a transformer more conveniently using the Trainer API
# Reload pretrained model:
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
model.to(DEVICE)
model.train();
optim = torch.optim.Adam(model.parameters(), lr=5e-5)
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
logging_dir='./logs',
logging_steps=10,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
)
# install dataset via pip install datasets
metric = load_metric("accuracy")
def compute_metrics(eval_pred):
logits, labels = eval_pred # logits are a numpy array, not pytorch tensor
predictions = np.argmax(logits, axis=-1)
return metric.compute(
predictions=predictions, references=labels)
optim = torch.optim.Adam(model.parameters(), lr=5e-5)
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
logging_dir='./logs',
logging_steps=10
)
trainer = Trainer(
model=model,
compute_metrics=compute_metrics,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
optimizers=(optim, None) # optimizer and learning rate scheduler
)
# force model to only use 1 GPU (even if multiple are availabe)
# to compare more fairly to previous code
trainer.args._n_gpu = 1
start_time = time.time()
trainer.train()
print(f'Total Training Time: {(time.time() - start_time)/60:.2f} min')
trainer.evaluate()
model.eval()
model.to(DEVICE)
print(f'Test accuracy: {compute_accuracy(model, test_loader, DEVICE):.2f}%')
# ...
# ---
#
# Readers may ignore the next cell.