-
Notifications
You must be signed in to change notification settings - Fork 0
/
I.py
30 lines (30 loc) · 1.06 KB
/
I.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
class I:
#
def __init__(self):
self.curiosity = 0.0
self.sociability = 0.0
self.survival = 0.0
self.efficacy = 0.0
self.pronouns = ["I", "my ", "mine"]
self.sleepiness = 0.0
self.decaylist = np.array([0.00001, 0.00001, 0.00001, 0.00001, 0.0001])
#normalized between 0 and 1
#values for states
self.ceilingval = np.array([1.0, 1.0, 1.0, 1.0, 1.0])
self.I = np.ndarray([self.curiosity, self.sociability, self.survival, self.efficacy])
def refresh(self):
self.I = np.ndarray([self.curiosity, self.sociability, self.survival, self.efficacy])
def rewardCur(self):
self.I[0]+=self.factorlist[0]
def rewardSoc(self):
self.I[1]+=self.factorlist[1]
def rewardSur(self):
self.I[2]+=self.factorlist[2]
def rewardEff(self):
self.I[2]+=self.factorlist[2]
def rewardEff(self):
self.I[2]+=self.factorlist[2]
def decayrefresh(self):
for x in range(0, len(1)):
self.I[x]-=self.decaylist[x]