-
Notifications
You must be signed in to change notification settings - Fork 9
/
nmf_beta.m
192 lines (173 loc) · 6.09 KB
/
nmf_beta.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
function [W,H,errs,vout] = nmf_beta(V,r,varargin)
% function [W,H,errs,vout] = nmf_beta(V,r,varargin)
%
% Implements NMF using the beta-divergence [1]:
%
% min D(V||W*H) s.t. W>=0, H>=0
%
% /
% | sum(V(:).^beta + (beta-1)*R(:).^beta - ...
% | beta*V(:).*R(:).^(beta-1)) / ...
% | (beta*(beta-1)) (beta \in{0 1}
% where D(V||R) = |
% | sum(V(:).*log(V(:)./R(:)) - V(:) + R(:)) (beta=1)
% |
% | sum(V(:)./R(:) - log(V(:)./R(:)) - 1) (beta=0)
% \
%
% This divergence reduces to the following interesting distances for
% certain values of beta:
%
% - Itakura-Saito (beta=0)
% - I-divergence (beta=1)
% - Euclidean distance (beta=2)
%
% Inputs: (all except V and r are optional and passed in in name-value pairs)
% V [mat] - Input matrix (n x m)
% r [num] - Rank of the decomposition
% beta [num] - beta parameter [0]
% niter [num] - Max number of iterations to use [100]
% thresh [num] - Number between 0 and 1 used to determine convergence;
% the algorithm has considered to have converged when:
% (err(t-1)-err(t))/(err(1)-err(t)) < thresh
% ignored if thesh is empty [[]]
% norm_w [num] - Type of normalization to use for columns of W [1]
% can be 0 (none), 1 (1-norm), or 2 (2-norm)
% norm_h [num] - Type of normalization to use for rows of H [0]
% can be 0 (none), 1 (1-norm), 2 (2-norm), or 'a' (sum(H(:))=1)
% verb [num] - Verbosity level (0-3, 0 means silent) [1]
% W0 [mat] - Initial W values (n x r) [[]]
% empty means initialize randomly
% H0 [mat] - Initial H values (r x m) [[]]
% empty means initialize randomly
% W [mat] - Fixed value of W (n x r) [[]]
% empty means we should update W at each iteration while
% passing in a matrix means that W will be fixed
% H [mat] - Fixed value of H (r x m) [[]]
% empty means we should update H at each iteration while
% passing in a matrix means that H will be fixed
% myeps [num] - Small value to add to denominator of updates [1e-20]
%
% Outputs:
% W [mat] - Basis matrix (n x r)
% H [mat] - Weight matrix (r x m)
% errs [vec] - Error of each iteration of the algorithm
%
% [1] Cichocki, A. and Amari, S.I. and Zdunek, R. and Kompass, R. and
% Hori, G. and He, Z. Extended SMART Algorithms for Non-negative Matrix
% Factorization, Artificial Intelligence and Soft Computing, 2006
%
% 2010-01-14 Graham Grindlay (grindlay@ee.columbia.edu)
% Copyright (C) 2008-2028 Graham Grindlay (grindlay@ee.columbia.edu)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% do some sanity checks
if min(min(V)) < 0
error('Matrix entries can not be negative');
end
if min(sum(V,2)) == 0
error('Not all entries in a row can be zero');
end
[n,m] = size(V);
% process arguments
[beta, niter, thresh, norm_w, norm_h, verb, myeps, W0, H0, W, H] = ...
parse_opt(varargin, 'beta', 0, 'niter', 100, 'thresh', [], ...
'norm_w', 1, 'norm_h', 0, 'verb', 1, 'myeps', 1e-20, ...
'W0', [], 'H0', [], 'W', [], 'H', []);
% initialize W based on what we got passed
if isempty(W)
if isempty(W0)
W = rand(n,r);
else
W = W0;
end
update_W = true;
else
update_W = false;
end
% initialize H based on what we got passed
if isempty(H)
if isempty(H0)
H = rand(r,m);
else
H = H0;
end
update_H = true;
else % we aren't H
update_H = false;
end
if norm_w ~= 0
% normalize W
W = normalize_W(W,norm_w);
end
if norm_h ~= 0
% normalize H
H = normalize_H(H,norm_h);
end
% initial reconstruction
R = W*H;
errs = zeros(niter,1);
for t = 1:niter
% update W if requested
if update_W
W = W .* ( ((R.^(beta-2) .* V)*H') ./ max(R.^(beta-1)*H', myeps) );
if norm_w ~= 0
W = normalize_W(W,norm_w);
end
end
% update reconstruction
R = W*H;
% update H if requested
if update_H
H = H .* ( (W'*(R.^(beta-2) .* V)) ./ max(W'*R.^(beta-1), myeps) );
if norm_h ~= 0
H = normalize_H(H,norm_h);
end
end
% update reconstruction
R = W*H;
% compute beta-divergence
switch beta
case 0
errs(t) = sum(V(:)./R(:) - log(V(:)./R(:)) - 1);
case 1
errs(t) = sum(V(:).*log(V(:)./R(:)) - V(:) + R(:));
case 2
errs(t) = sum(sum((V-W*H).^2));
otherwise
errs(t) = sum(V(:).^beta + (beta-1)*R(:).^beta - beta*V(:).*R(:).^(beta-1)) / ...
(beta*(beta-1));
end
% display error if asked
if verb >= 3
disp(['nmf_beta: iter=' num2str(t) ', err=' num2str(errs(t)) ...
'(beta=' num2str(beta) ')']);
end
% check for convergence if asked
if ~isempty(thresh)
if t > 2
if (errs(t-1)-errs(t))/(errs(1)-errs(t-1)) < thresh
break;
end
end
end
end
% display error if asked
if verb >= 2
disp(['nmf_beta: final_err=' num2str(errs(t)) '(beta=' num2str(beta) ')']);
end
% if we broke early, get rid of extra 0s in the errs vector
errs = errs(1:t);
% needed to conform to function signature required by nmf_alg
vout = {};