-
Notifications
You must be signed in to change notification settings - Fork 216
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #90 from aurelio-labs/ashraq/hf-encoder
feat: Add HuggingFace Encoder
- Loading branch information
Showing
11 changed files
with
1,305 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,262 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/aurelio-labs/semantic-router/blob/main/docs/encoders/fastembed.ipynb) [![Open nbviewer](https://raw.githubusercontent.com/pinecone-io/examples/master/assets/nbviewer-shield.svg)](https://nbviewer.org/github/aurelio-labs/semantic-router/blob/main/docs/encoders/fastembed.ipynb)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Using FastEmbedEncoder" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"FastEmbed is a _lightweight and fast_ embedding library built for generating embeddings. It can be run locally and supports many open source encoders.\n", | ||
"\n", | ||
"Beyond being a local, open source library, there are two key reasons we might want to run this library over other open source alternatives:\n", | ||
"\n", | ||
"* **Lightweight and Fast**: The library uses an ONNX runtime so there is no heavy PyTorch dependency, supports quantized model weights (smaller memory footprint), is developed for running on CPU, and uses data-parallelism for encoding large datasets.\n", | ||
"\n", | ||
"* **Open-weight models**: FastEmbed supports many open source and open-weight models, included some that outperform popular encoders like OpenAI's Ada-002." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Getting Started" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We start by installing semantic-router with the `[fastembed]` flag to include all necessary dependencies for `FastEmbedEncoder`:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!pip install -qU \"semantic-router[fastembed]==0.0.15\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We start by defining a dictionary mapping routes to example phrases that should trigger those routes." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from semantic_router import Route\n", | ||
"\n", | ||
"politics = Route(\n", | ||
" name=\"politics\",\n", | ||
" utterances=[\n", | ||
" \"isn't politics the best thing ever\",\n", | ||
" \"why don't you tell me about your political opinions\",\n", | ||
" \"don't you just love the president\",\n", | ||
" \"don't you just hate the president\",\n", | ||
" \"they're going to destroy this country!\",\n", | ||
" \"they will save the country!\",\n", | ||
" ],\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Let's define another for good measure:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"chitchat = Route(\n", | ||
" name=\"chitchat\",\n", | ||
" utterances=[\n", | ||
" \"how's the weather today?\",\n", | ||
" \"how are things going?\",\n", | ||
" \"lovely weather today\",\n", | ||
" \"the weather is horrendous\",\n", | ||
" \"let's go to the chippy\",\n", | ||
" ],\n", | ||
")\n", | ||
"\n", | ||
"routes = [politics, chitchat]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Now we initialize our embedding model, you can find a list of [all available embedding models here](https://qdrant.github.io/fastembed/examples/Supported_Models/):" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from semantic_router.encoders import FastEmbedEncoder\n", | ||
"\n", | ||
"encoder = FastEmbedEncoder()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"_**⚠️ If you see an ImportError, you must install the FastEmbed library. You can do so by installing Semantic Router using `pip install -qU \"semantic-router[fastembed]\"`.**_" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Now we define the `RouteLayer`. When called, the route layer will consume text (a query) and output the category (`Route`) it belongs to — to initialize a `RouteLayer` we need our `encoder` model and a list of `routes`." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"\u001b[32m2024-01-06 16:53:16 INFO semantic_router.utils.logger Initializing RouteLayer\u001b[0m\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from semantic_router.layer import RouteLayer\n", | ||
"\n", | ||
"rl = RouteLayer(encoder=encoder, routes=routes)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Now we can test it:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"RouteChoice(name='politics', function_call=None)" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"rl(\"don't you love politics?\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"RouteChoice(name='chitchat', function_call=None)" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"rl(\"how's the weather today?\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Both are classified accurately, what if we send a query that is unrelated to our existing `Route` objects?" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"RouteChoice(name=None, function_call=None)" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"rl(\"I'm interested in learning about llama 2\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"In this case, we return `None` because no matches were identified." | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "decision-layer", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.