-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathaggregate_results.py
70 lines (65 loc) · 2.93 KB
/
aggregate_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from tensorboard.backend.event_processing import event_accumulator
from os import listdir
from os.path import isfile, join
import re
import argparse
import numpy as np, scipy.stats as st
def get_last_metric(path, metric, get_step=None):
onlyfiles = sorted([join(path,f) for f in listdir(path) if isfile(join(path, f))])
last_point = 0
v = None
for f in onlyfiles:
ea = event_accumulator.EventAccumulator(f)
# top1 not found
ea.Reload()
try:
if get_step is not None:
for e in ea.Scalars(metric):
last_point = e.step
v = e.value
if get_step is not None and last_point == get_step:
return v, last_point
e = ea.Scalars(metric)[-1]
if e.step >= last_point:
if last_point > 0:
print("Warning: Multiple runs with one name:", f, "other result:", v, 'at', last_point)
last_point = e.step
v = e.value
except Exception as e:
print(e)
return v, last_point
def get_results(logdir, mypath, split='test', metric='top1', assert_step=None):
mypath = mypath.split('/')[-1]
suffix = '.yaml'
if mypath.endswith(suffix):
mypath = mypath[:-len(suffix)]
paths = [path for path in listdir(logdir) if re.search(f'{mypath}(_[0-9]+try|).yaml', path)]
print([path[len(mypath):] for path in paths])
paths = [join(join(logdir, path), split) for path in paths]
results = [get_last_metric(path, metric, get_step=assert_step) for path in paths]
assert all([r[1] == results[0][1] for r in results]), results
step = results[0][1]
results = [r[0] for r in results]
assert all(r is not None for r in results), results
if assert_step is not None:
assert assert_step == step, f'{assert_step} vs {step}'
print(f"The results are the following {len(results)} at step {step}: {results}")
results = np.array(results)
return results
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Get Top1 Results.')
parser.add_argument('path',
help='Prefix of the paths/conf files for the runs to evaluate.')
parser.add_argument('--logdir', default='logs')
parser.add_argument('--split', default='test')
parser.add_argument('--metric', default='top1', help='Can be e.g. top1, top5, loss, eval_top1')
parser.add_argument('--step', default=None, type=int)
args = parser.parse_args()
mypath = args.path.split('/')[-1]
results = get_results(args.logdir,args.path,args.split,args.metric, assert_step=args.step)
n = len(results)
m, se = np.mean(results), st.sem(results)
confidence = .95
h = se * st.t.ppf((1 + confidence) / 2., n-1)
print(f"Mean: {round(np.mean(results),4)}, Std: {round(np.std(results),4)}, +/-: {round(h,4)}")
print(f"{round(np.mean(results)*100,2)} $\pm$ {str(round(h,4)*100)[1:]}")