-
Notifications
You must be signed in to change notification settings - Fork 16
/
activation.go
83 lines (74 loc) · 2.63 KB
/
activation.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
package model
import (
"fmt"
G "gorgonia.org/gorgonia"
)
// PRelu32 is the slop learnable LeakyRelu activation function
// slop should be a scalar
func PRelu32(x, slop *G.Node) (retVal *G.Node) {
negative := G.Must(G.HadamardProd(G.Must(G.Sub(x, G.Must(G.Abs(x)))), slop))
positive := G.Must(G.Add(x, G.Must(G.Abs(x))))
retVal = G.Must(G.Mul(G.Must(G.Add(negative, positive)), G.NewConstant(float32(0.5))))
return
}
// EucDistance is the Euclidean distance between two matrix, typically used for
// calculating the distance between two embedding.
// Case1: x, y shapes are same, no broadcast. output shape will be x.shape[:-1]
// Case2: x, y shapes are different, broadcast will be applied on the smaller dim.
// output shape will be something like x.shape[:-1] but with a broadcast dim
func EucDistance(x, y *G.Node) (retVal *G.Node, err error) {
var sub *G.Node
if x.Dims() == y.Dims() {
var sameShape = true
for i := 0; i < x.Dims(); i++ {
if x.Shape()[i] != y.Shape()[i] {
if x.Shape()[i] < y.Shape()[i] {
sub = G.Must(G.BroadcastSub(x, y, []byte{byte(i)}, nil))
} else {
sub = G.Must(G.BroadcastSub(x, y, nil, []byte{byte(i)}))
}
sameShape = false
break
}
}
if sameShape && sub == nil {
sub = G.Must(G.Sub(x, y))
}
}
if sub == nil {
err = fmt.Errorf("x, y shapes not supported: %v, %v", x.Shape(), y.Shape())
return
}
retVal = G.Must(G.Sqrt(G.Must(G.Sum(G.Must(G.Square(sub)), x.Dims()-1))))
return
}
// CosineSimilarity is the cosine distance between two matrix, typically used for
// calculating the distance between two embedding.
// Case1: x, y shapes are same, no broadcast. output shape will be x.shape[:-1]
// Case2: x, y shapes are different, broadcast will be applied on the smaller dim.
// output shape will be something like x.shape[:-1] but with a broadcast dim
func CosineSimilarity(x, y *G.Node) (retVal *G.Node, err error) {
if x.Dims() != y.Dims() {
err = fmt.Errorf("x, y shapes not supported: %v, %v", x.Shape(), y.Shape())
return
}
for i := 0; i < x.Dims(); i++ {
if x.Shape()[i] != y.Shape()[i] {
if x.Shape()[i] < y.Shape()[i] {
x, y, err = G.Broadcast(x, y, G.NewBroadcastPattern([]byte{byte(i)}, nil))
} else {
x, y, err = G.Broadcast(x, y, G.NewBroadcastPattern(nil, []byte{byte(i)}))
}
if err != nil {
return
}
}
}
xNorm := G.Must(G.Sqrt(G.Must(G.Sum(G.Must(G.Square(x)), x.Dims()-1))))
yNorm := G.Must(G.Sqrt(G.Must(G.Sum(G.Must(G.Square(y)), y.Dims()-1))))
retVal = G.Must(G.HadamardDiv(
G.Must(G.Sum(G.Must(G.HadamardProd(x, y)), x.Dims()-1)),
G.Must(G.Add(G.Must(G.HadamardProd(xNorm, yNorm)), G.NewConstant(float32(1e-8)))),
))
return
}