This repository has been archived by the owner on Aug 23, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtest.py
executable file
·610 lines (496 loc) · 21.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
# -*- coding: utf-8 -*-
import numpy as np
import unittest
import peakdetect
import waveform
# generate time axis for 5 cycles @ 50 Hz
linspace_standard = np.linspace(0, 0.10, 1000)
linspace_peakdetect = np.linspace(0, 0.10, 10000)
def prng():
"""
A numpy random number generator with a known starting state
return: a random number generator
"""
return np.random.RandomState(773889874)
def _write_log(file, header, message):
with open(file, "ab") as f:
f.write(header)
f.write("\n")
f.writelines(message)
f.write("\n")
f.write("\n")
def _calculate_missmatch(received, expected):
"""
Calculates the mean mismatch between received and expected data
keyword arguments:
received -- [[time of peak], [ampl of peak]]
expected -- [[time of peak], [ampl of peak]]
return (time mismatch, ampl mismatch)
"""
#t_diff = np.abs(np.asarray(received[0]) - expected[0])
t_diff = np.asarray(received[0]) - expected[0]
a_diff = np.abs(np.asarray(received[1]) - expected[1])
#t_diff /= np.abs(expected[0]) time error in absolute terms
a_diff /= np.abs(expected[1])
return (t_diff, a_diff)
def _log_diff(t_max, y_max,
t_min, y_min,
t_max_expected, y_max_expected,
t_min_expected, y_min_expected,
file, name
):
"""
keyword arguments:
t_max -- time of maxima
y_max -- amplitude of maxima
t_min -- time of minima
y_min -- amplitude of maxima
t_max_expected -- expected time of maxima
y_max_expected -- expected amplitude of maxima
t_min_expected -- expected time of minima
y_min_expected -- expected amplitude of maxima
file -- log file to write to
name -- name of the test performed
"""
t_diff_h, a_diff_h = _calculate_missmatch([t_max, y_max],
[t_max_expected, y_max_expected])
t_diff_l, a_diff_l = _calculate_missmatch([t_min, y_min],
[t_min_expected, y_min_expected])
#data = ["\t{0:.2e}\t{1:.2e}\t{2:.2e}\t{3:.2e}".format(*d) for d in
# [t_diff_h, t_diff_l, a_diff_h, a_diff_l]
# ]
frt = "val:{0} error:{1:.2e}"
data = ["\t{0}".format("\t".join(map(frt.format, val, err))) for val, err in
[(t_max, t_diff_h),
(t_min, t_diff_l),
(y_max, a_diff_h),
(y_min, a_diff_l)]
]
_write_log(file, name, "\n".join(data))
def _is_close(max_p, min_p,
expected_max, expected_min,
atol_time, tol_ampl,
file, name):
"""
Determines if the peaks are within the given tolerance
keyword arguments:
max_p -- location and value of maxima
min_p -- location and value of minima
expected_max -- expected location and value of maxima
expected_min -- expected location and value of minima
atol_time -- absolute tolerance of location of vertex
tol_ampl -- relative tolerance of value of vertex
file -- log file to write to
name -- name of the test performed
"""
if len(max_p) == 5:
t_max_expected, y_max_expected = zip(*expected_max)
else:
if abs(max_p[0][0] - expected_max[0][0]) > 0.001:
t_max_expected, y_max_expected = zip(*expected_max[1:])
else:
t_max_expected, y_max_expected = zip(*expected_max[:-1])
if len(min_p) == 5:
t_min_expected, y_min_expected = zip(*expected_min)
else:
t_min_expected, y_min_expected = zip(*expected_min[:-1])
t_max, y_max = zip(*max_p)
t_min, y_min = zip(*min_p)
t_max_close = np.isclose(t_max, t_max_expected, atol=atol_time, rtol=1e-12)
y_max_close = np.isclose(y_max, y_max_expected, tol_ampl)
t_min_close = np.isclose(t_min, t_min_expected, atol=atol_time, rtol=1e-12)
y_min_close = np.isclose(y_min, y_min_expected, tol_ampl)
_log_diff(t_max, y_max, t_min, y_min,
t_max_expected, y_max_expected,
t_min_expected, y_min_expected,
file, name)
return t_max_close, y_max_close, t_min_close, y_min_close
class Test_analytic_wfm(unittest.TestCase):
def test_ACV1(self):
# compare with previous lambda implementation
old = waveform._ACV_A1_L(linspace_standard)
acv = waveform.ACV_A1(linspace_standard)
self.assertTrue(np.allclose(acv, old, rtol=1e-9))
def test_ACV2(self):
# compare with previous lambda implementation
old = waveform._ACV_A2_L(linspace_standard)
acv = waveform.ACV_A2(linspace_standard)
self.assertTrue(np.allclose(acv, old, rtol=1e-9))
def test_ACV3(self):
# compare with previous lambda implementation
old = waveform._ACV_A3_L(linspace_standard)
acv = waveform.ACV_A3(linspace_standard)
self.assertTrue(np.allclose(acv, old, rtol=1e-9))
def test_ACV4(self):
# compare with previous lambda implementation
old = waveform._ACV_A4_L(linspace_standard)
acv = waveform.ACV_A4(linspace_standard)
self.assertTrue(np.allclose(acv, old, rtol=1e-9))
def test_ACV5(self):
# compare with previous lambda implementation
old = waveform._ACV_A5_L(linspace_standard)
acv = waveform.ACV_A5(linspace_standard)
self.assertTrue(np.allclose(acv, old, rtol=1e-9))
def test_ACV6(self):
# compare with previous lambda implementation
old = waveform._ACV_A6_L(linspace_standard)
acv = waveform.ACV_A6(linspace_standard)
self.assertTrue(np.allclose(acv, old, rtol=1e-9))
def test_ACV7(self):
num = np.linspace(0, 20, 1000)
old = waveform._ACV_A7_OLD(num)
acv = waveform.ACV_A7(num)
self.assertTrue(np.allclose(acv, old, rtol=1e-9))
def test_ACV8(self):
num = np.linspace(0, 3150, 10000)
old = waveform._ACV_A8_OLD(num)
acv = waveform.ACV_A8(num)
self.assertTrue(np.allclose(acv, old, rtol=1e-9))
class TestPeakdetectTemplate(unittest.TestCase):
func = None
file = "Mismatch data.txt"
name = "template"
args = []
kwargs = {}
msg_t = "Time of {0!s} not within tolerance:\n\t{1}"
msg_y = "Amplitude of {0!s} not within tolerance:\n\t{1}"
def _test_peak_template(self, waveform,
expected_max, expected_min,
wav_name,
atol_time = 1e-5, tol_ampl = 1e-5):
"""
keyword arguments:
waveform -- a function that given x can generate a test waveform
expected_max -- position and amplitude where maxima are expected
expected_min -- position and amplitude where minima are expected
wav_name -- Name of the test waveform
atol_time -- absolute tolerance for position of vertex (default: 1e-5)
tol_ampl -- relative tolerance for position of vertex (default: 1e-5)
"""
y = waveform(linspace_peakdetect)
max_p, min_p = self.func(y, linspace_peakdetect,
*self.args, **self.kwargs
)
# check if the correct amount of peaks were discovered
self.assertIn(len(max_p), [4,5])
self.assertIn(len(min_p), [4,5])
#
# check if position and amplitude is within 0.001% which is approx the
# numeric uncertainty from the amount of samples used
#
t_max_close, y_max_close, t_min_close, y_min_close = _is_close(max_p,
min_p,
expected_max,
expected_min,
atol_time, tol_ampl,
self.file, "{0}: {1}".format(wav_name, self.name))
# assert if values are outside of tolerance
self.assertTrue(np.all(t_max_close),
msg=self.msg_t.format("maxima", t_max_close))
self.assertTrue(np.all(y_max_close),
msg=self.msg_y.format("maxima", y_max_close))
self.assertTrue(np.all(t_min_close),
msg=self.msg_t.format("minima", t_min_close))
self.assertTrue(np.all(y_min_close),
msg=self.msg_y.format("minima", y_min_close))
def test_peak_ACV1(self):
peak_pos = 1000*np.sqrt(2) # 1414.2135623730951
peak_neg = -peak_pos
expected_max = [
(0.005, peak_pos),
(0.025, peak_pos),
(0.045, peak_pos),
(0.065, peak_pos),
(0.085, peak_pos)
]
expected_min = [
(0.015, peak_neg),
(0.035, peak_neg),
(0.055, peak_neg),
(0.075, peak_neg),
(0.095, peak_neg)
]
atol_time = 1e-5
tol_ampl = 1e-6
self._test_peak_template(waveform.ACV_A1,
expected_max, expected_min,
"ACV1",
atol_time, tol_ampl)
def test_peak_ACV2(self):
peak_pos = 1000*np.sqrt(2) + 500 # 1414.2135623730951 + 500
peak_neg = (-1000*np.sqrt(2)) + 500 # -914.2135623730951
expected_max = [
(0.005, peak_pos),
(0.025, peak_pos),
(0.045, peak_pos),
(0.065, peak_pos),
(0.085, peak_pos)
]
expected_min = [
(0.015, peak_neg),
(0.035, peak_neg),
(0.055, peak_neg),
(0.075, peak_neg),
(0.095, peak_neg)
]
atol_time = 1e-5
tol_ampl = 2e-6
self._test_peak_template(waveform.ACV_A2,
expected_max, expected_min,
"ACV2",
atol_time, tol_ampl)
def test_peak_ACV3(self):
"""
Sine wave with a 3rd overtone
WolframAlpha solution
max{y = sin(100 pi x)+0.05 sin(400 pi x+(2 pi)/3)}~~
sin(6.28319 n+1.51306)-0.05 sin(25.1327 n+5.00505)
at x~~0.00481623+0.02 n for integer n
min{y = sin(100 pi x)+0.05 sin(400 pi x+(2 pi)/3)}~~
0.05 sin(6.55488-25.1327 n)-sin(1.37692-6.28319 n)
at x~~-0.00438287+0.02 n for integer n
Derivative for 50 Hz in 2 alternative forms
y = 100pi*cos(100pi*x) - 25pi*cos(400pi*x)-0.3464*50*pi*sin(400pi*x)
y = 100pi*cos(100pi*x) + 20pi*cos(400pi*x + 2*pi/3)
root 0 = 1/(50 * pi) * (pi*0 - 0.68846026579266880983)
The exact solution according to WolframAlpha - I haven't the foggiest
(tan^(-1)(root of
{#1^2-3&, 11 #2^8-8 #1 #2^7-8 #2^6+56 #1 #2^5+70 #2^4-56 #1 #2^3-48 #2^2+8 #1 #2-9&}(x)
near x = -0.822751)+pi n) / (50 * pi)
root 1 = 1/(50 * pi) * (pi*0 + 0.75653155241276430710)
period = 0.02
"""
base = 1000*np.sqrt(2)
# def peak_pos(n):
# return base * (np.sin(6.28319 * n + 1.51306)
# -0.05*np.sin(25.1327 * n + 5.00505))
# def peak_neg(n):
# return base * (0.05 * np.sin(6.55488 - 25.1327 * n)
# - np.sin(1.37692 - 6.28319 * n))
def peak_pos(n):
return base * (np.sin(2*np.pi * n + 1.51306)
-0.05*np.sin(8*np.pi * n + 5.00505))
def peak_neg(n):
return base * (0.05 * np.sin(6.55488 - 8*np.pi * n)
- np.sin(1.37692 - 2*np.pi * n))
t_max = [
0.75653155241276430710/(50*np.pi)+0.00,#0.004816229446859069
0.75653155241276430710/(50*np.pi)+0.02,#0.024816229446859069
0.75653155241276430710/(50*np.pi)+0.04,#0.044816229446859069
0.75653155241276430710/(50*np.pi)+0.06,#0.064816229446859069
0.75653155241276430710/(50*np.pi)+0.08 #0.084816229446859069
]
t_min = [
-0.68846026579266880983/(50*np.pi)+0.02,#0.015617125823069466
-0.68846026579266880983/(50*np.pi)+0.04,#0.035617125823069466
-0.68846026579266880983/(50*np.pi)+0.06,#0.055617125823069466
-0.68846026579266880983/(50*np.pi)+0.08,#0.075617125823069466
-0.68846026579266880983/(50*np.pi)+0.10 #0.095617125823069466
]
expected_max = [
(t_max[0], waveform.ACV_A3(t_max[0])),
(t_max[1], waveform.ACV_A3(t_max[1])),
(t_max[2], waveform.ACV_A3(t_max[2])),
(t_max[3], waveform.ACV_A3(t_max[3])),
(t_max[4], waveform.ACV_A3(t_max[4])),
]
expected_min = [
(t_min[0], waveform.ACV_A3(t_min[0])),
(t_min[1], waveform.ACV_A3(t_min[1])),
(t_min[2], waveform.ACV_A3(t_min[2])),
(t_min[3], waveform.ACV_A3(t_min[3])),
(t_min[4], waveform.ACV_A3(t_min[4])),
]
atol_time = 1e-5
tol_ampl = 2e-6
# reduced tolerance since the expected values are only approximated
self._test_peak_template(waveform.ACV_A3,
expected_max, expected_min,
"ACV3",
atol_time, tol_ampl)
def test_peak_ACV4(self):
"""
Sine wave with a 4th overtone
Expected data is from a numerical solution using 1e8 samples
The numerical solution used about 2 GB memory and required 64-bit
python
Test is currently disabled as it pushes time index forward enough to
change what peaks are discovers by peakdetect_fft, such that the last
maxima is lost instead of the first one, which is expected from all the
other functions
"""
expected_max = [
(0.0059351920593519207, 1409.2119572886963),
(0.025935191259351911, 1409.2119572887088),
(0.045935191459351918, 1409.2119572887223),
(0.065935191659351911, 1409.2119572887243),
(0.085935191859351917, 1409.2119572887166)
]
expected_min = [
(0.015935191159351911, -1409.2119572886984),
(0.035935191359351915, -1409.2119572887166),
(0.055935191559351914, -1409.2119572887245),
(0.075935191759351914, -1409.2119572887223),
(0.09593519195935192, -1409.2119572887068)
]
atol_time = 1e-5
tol_ampl = 2.5e-6
# reduced tolerance since the expected values are only approximated
self._test_peak_template(waveform.ACV_A4,
expected_max, expected_min,
"ACV4",
atol_time, tol_ampl)
def test_peak_ACV5(self):
"""
Realistic triangle wave
Easy enough to solve, but here is the numerical solution from 1e8
samples. Numerical solution used about 2 GB memory and required
64-bit python
expected_max = [
[0.0050000000500000008, 1598.0613254815967]
[0.025000000250000001, 1598.0613254815778],
[0.045000000450000008, 1598.0613254815346],
[0.064999999650000001, 1598.0613254815594],
[0.084999999849999994, 1598.0613254815908]
]
expected_min = [
[0.015000000150000001, -1598.0613254815908],
[0.035000000350000005, -1598.0613254815594],
[0.054999999549999998, -1598.0613254815346],
[0.074999999750000004, -1598.0613254815778],
[0.094999999949999997, -1598.0613254815967]
]
"""
peak_pos = 1130*np.sqrt(2) # 1598.0613254815976
peak_neg = -1130*np.sqrt(2) # -1598.0613254815967
expected_max = [
(0.005, peak_pos),
(0.025, peak_pos),
(0.045, peak_pos),
(0.065, peak_pos),
(0.085, peak_pos)
]
expected_min = [
(0.015, peak_neg),
(0.035, peak_neg),
(0.055, peak_neg),
(0.075, peak_neg),
(0.095, peak_neg)
]
atol_time = 1e-5
tol_ampl = 4e-6
self._test_peak_template(waveform.ACV_A5,
expected_max, expected_min,
"ACV5",
atol_time, tol_ampl)
def test_peak_ACV6(self):
"""
Realistic triangle wave
Easy enough to solve, but here is the numerical solution from 1e8
samples. Numerical solution used about 2 GB memory and required
64-bit python
expected_max = [
[0.0050000000500000008, 1485.6313472729362],
[0.025000000250000001, 1485.6313472729255],
[0.045000000450000008, 1485.6313472729012],
[0.064999999650000001, 1485.6313472729153],
[0.084999999849999994, 1485.6313472729323]
]
expected_min = [
[0.015000000150000001, -1485.6313472729323],
[0.035000000350000005, -1485.6313472729153],
[0.054999999549999998, -1485.6313472729012],
[0.074999999750000004, -1485.6313472729255],
[0.094999999949999997, -1485.6313472729362]
]
"""
peak_pos = 1050.5*np.sqrt(2) # 1485.6313472729364
peak_neg = -1050.5*np.sqrt(2) # 1485.6313472729255
expected_max = [
(0.005, peak_pos),
(0.025, peak_pos),
(0.045, peak_pos),
(0.065, peak_pos),
(0.085, peak_pos)
]
expected_min = [
(0.015, peak_neg),
(0.035, peak_neg),
(0.055, peak_neg),
(0.075, peak_neg),
(0.095, peak_neg)
]
atol_time = 1e-5
tol_ampl = 2.5e-6
self._test_peak_template(waveform.ACV_A6,
expected_max, expected_min,
"ACV6",
atol_time, tol_ampl)
class Test_peakdetect(TestPeakdetectTemplate):
name = "peakdetect"
def __init__(self, *args, **kwargs):
super(Test_peakdetect, self).__init__(*args, **kwargs)
self.func = peakdetect.peakdetect
class Test_peakdetect_fft(TestPeakdetectTemplate):
name = "peakdetect_fft"
def __init__(self, *args, **kwargs):
super(Test_peakdetect_fft, self).__init__(*args, **kwargs)
self.func = peakdetect.peakdetect_fft
class Test_peakdetect_parabola(TestPeakdetectTemplate):
name = "peakdetect_parabola"
def __init__(self, *args, **kwargs):
super(Test_peakdetect_parabola, self).__init__(*args, **kwargs)
self.func = peakdetect.peakdetect_parabola
class Test_peakdetect_sine(TestPeakdetectTemplate):
name = "peakdetect_sine"
def __init__(self, *args, **kwargs):
super(Test_peakdetect_sine, self).__init__(*args, **kwargs)
self.func = peakdetect.peakdetect_sine
class Test_peakdetect_sine_locked(TestPeakdetectTemplate):
name = "peakdetect_sine_locked"
def __init__(self, *args, **kwargs):
super(Test_peakdetect_sine_locked, self).__init__(*args, **kwargs)
self.func = peakdetect.peakdetect_sine_locked
class Test_peakdetect_spline(TestPeakdetectTemplate):
name = "peakdetect_spline"
def __init__(self, *args, **kwargs):
super(Test_peakdetect_spline, self).__init__(*args, **kwargs)
self.func = peakdetect.peakdetect_spline
class Test_peakdetect_zero_crossing(TestPeakdetectTemplate):
name = "peakdetect_zero_crossing"
def __init__(self, *args, **kwargs):
super(Test_peakdetect_zero_crossing, self).__init__(*args, **kwargs)
self.func = peakdetect.peakdetect_zero_crossing
class Test_peakdetect_misc(unittest.TestCase):
def test__pad(self):
data = [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]
pad_len = 2
pad = lambda x, c: x[:len(x) // 2] + [0] * c + x[len(x) // 2:]
expected = pad(list(data), 2 **
peakdetect._n(len(data) * pad_len) - len(data))
received = peakdetect._pad(data, pad_len)
self.assertListEqual(received, expected)
def test__n(self):
self.assertEqual(2**peakdetect._n(1000), 1024)
def test_zero_crossings(self):
y = waveform.ACV_A1(linspace_peakdetect)
expected_indice = [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000]
indice = peakdetect.zero_crossings(y, 50)
msg = "index:{0:d} should be within 1 of expected:{1:d}"
for rec, exp in zip(indice, expected_indice):
self.assertAlmostEqual(rec, exp, delta=1, msg=msg.format(rec, exp))
if __name__ == "__main__":
tests_to_run = [
# Test_analytic_wfm,
Test_peakdetect,
Test_peakdetect_parabola,
Test_peakdetect_fft,
# Test_peakdetect_sine, #sine tests disabled pending rework
# Test_peakdetect_sine_locked,
Test_peakdetect_spline,
Test_peakdetect_zero_crossing,
Test_peakdetect_misc
]
suites_list = [unittest.TestLoader().loadTestsFromTestCase(test_class) for test_class in tests_to_run]
big_suite = unittest.TestSuite(suites_list)
unittest.TextTestRunner(verbosity=2).run(big_suite)