From 72f6620b83898094e71d1d1cec15b448aabbf789 Mon Sep 17 00:00:00 2001 From: avidLearnerInProgress Date: Sat, 23 Jun 2018 23:35:02 +0530 Subject: [PATCH] Updated Readme --- README.rst | 12 ++++++++---- Readme.md | 10 ++++++++-- 2 files changed, 16 insertions(+), 6 deletions(-) diff --git a/README.rst b/README.rst index f3bbc95..cf0a6fc 100644 --- a/README.rst +++ b/README.rst @@ -1,6 +1,6 @@

pyCAIR Logo

-pyCAIR is a content-aware image resizing(CAIR) library based on [Seam Carving for Content-Aware Image Resizing](http://http://graphics.cs.cmu.edu/courses/15-463/2012_fall/hw/proj3-seamcarving/imret.pdf "Seam Carving for Content-Aware Image Resizing") paper. +pyCAIR is a content-aware image resizing(CAIR) [library](https://pypi.org/project/pyCAIR/) based on [Seam Carving for Content-Aware Image Resizing](http://http://graphics.cs.cmu.edu/courses/15-463/2012_fall/hw/proj3-seamcarving/imret.pdf "Seam Carving for Content-Aware Image Resizing") paper. ## Table of Contents @@ -47,8 +47,6 @@ pyCAIR is a content-aware image resizing(CAIR) library based on [Seam Carving fo **Directory structure:** -**Directory structure:** - **pyCAIR** (root directory)   | - images/   | - results / @@ -246,10 +244,16 @@ f = writeImage(image, args) - [x] Store subsamples in different directories for crop and seam respectively - [x] Generate video/gif from sub-samples - [x] Provide a better Readme +- [x] Provide examples for usage - [ ] Generate unittests for each functions -- [ ] Provide examples for all the entry points +- [ ] Add Continous Integration Services(Travis, Coveralls) +- [ ] Add badges - [ ] Provide better project description on PyPI - [ ] Documentation using Spinx +- [ ] Integrate object detection using YOLOv2 +- [ ] Identify most important object (using probability of predicted object) +- [ ] Invert energy values of most important object +- [ ] Re-apply Seam Carve and compare results ## License diff --git a/Readme.md b/Readme.md index 289db26..cf0a6fc 100644 --- a/Readme.md +++ b/Readme.md @@ -1,6 +1,6 @@

pyCAIR Logo

-pyCAIR is a content-aware image resizing(CAIR) library based on [Seam Carving for Content-Aware Image Resizing](http://http://graphics.cs.cmu.edu/courses/15-463/2012_fall/hw/proj3-seamcarving/imret.pdf "Seam Carving for Content-Aware Image Resizing") paper. +pyCAIR is a content-aware image resizing(CAIR) [library](https://pypi.org/project/pyCAIR/) based on [Seam Carving for Content-Aware Image Resizing](http://http://graphics.cs.cmu.edu/courses/15-463/2012_fall/hw/proj3-seamcarving/imret.pdf "Seam Carving for Content-Aware Image Resizing") paper. ## Table of Contents @@ -244,10 +244,16 @@ f = writeImage(image, args) - [x] Store subsamples in different directories for crop and seam respectively - [x] Generate video/gif from sub-samples - [x] Provide a better Readme +- [x] Provide examples for usage - [ ] Generate unittests for each functions -- [ ] Provide examples for all the entry points +- [ ] Add Continous Integration Services(Travis, Coveralls) +- [ ] Add badges - [ ] Provide better project description on PyPI - [ ] Documentation using Spinx +- [ ] Integrate object detection using YOLOv2 +- [ ] Identify most important object (using probability of predicted object) +- [ ] Invert energy values of most important object +- [ ] Re-apply Seam Carve and compare results ## License