forked from dlmacedo/entropic-out-of-distribution-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
analize.py
136 lines (118 loc) · 5.93 KB
/
analize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import argparse
import os
import torch
import sys
import numpy as np
import pandas as pd
import random
pd.options.display.float_format = '{:,.4f}'.format
pd.set_option('display.width', 160)
parser = argparse.ArgumentParser(description='Analize results in csv files')
parser.add_argument('-p', '--path', default="", type=str, help='Path for the experiments to be analized')
parser.set_defaults(argument=True)
random.seed(1234)
np.random.seed(1234)
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
def main():
DATASETS = ['svhn', 'cifar10', 'cifar100']
MODELS = ['densenetbc100', 'resnet110']
LOSSES = ['softmax_no_no_no_final', 'isomax_no_no_no_final', 'isomaxplus_no_no_no_final',
]
print(DATASETS)
print(MODELS)
print(LOSSES)
args = parser.parse_args()
path = os.path.join("experiments", args.path)
if not os.path.exists(path):
sys.exit('You should pass a valid path to analyze!!!')
print("\n#####################################")
print("########## FINDING FILES ############")
print("#####################################")
list_of_files = []
file_names_dict_of_lists = {}
for (dir_path, dir_names, file_names) in os.walk(path):
for filename in file_names:
if filename.endswith('.csv') or filename.endswith('.npy') or filename.endswith('.pth'):
if filename not in file_names_dict_of_lists:
file_names_dict_of_lists[filename] = [os.path.join(dir_path, filename)]
else:
file_names_dict_of_lists[filename] += [os.path.join(dir_path, filename)]
list_of_files += [os.path.join(dir_path, filename)]
print()
for key in file_names_dict_of_lists:
print(key)
#print(file_names_dict_of_lists[key])
print("\n#####################################")
print("######## TABLE: RAW RESULTS #########")
print("#####################################")
data_frame_list = []
for file in file_names_dict_of_lists['results_raw.csv']:
data_frame_list.append(pd.read_csv(file))
raw_results_data_frame = pd.concat(data_frame_list)
print(raw_results_data_frame[:30])
print("\n#####################################")
print("###### TABLE: BEST ACCURACIES #######")
print("#####################################")
data_frame_list = []
for file in file_names_dict_of_lists['results_best.csv']:
data_frame_list.append(pd.read_csv(file))
best_results_data_frame = pd.concat(data_frame_list)
best_results_data_frame.to_csv(os.path.join(path, 'all_results_best.csv'), index=False)
for data in DATASETS:
for model in MODELS:
print("\n########")
print(data)
print(model)
df = best_results_data_frame.loc[
best_results_data_frame['DATA'].isin([data]) &
best_results_data_frame['MODEL'].isin([model])
]
df = df.rename(columns={'VALID MAX_PROBS MEAN': 'MAX_PROBS', 'VALID ENTROPIES MEAN': 'ENTROPIES',
'VALID INTRA_LOGITS MEAN': 'INTRA_LOGITS', 'VALID INTER_LOGITS MEAN': 'INTER_LOGITS'})
df = df.groupby(['LOSS'], as_index=False)[[
'TRAIN LOSS', 'TRAIN ACC1','VALID LOSS', 'VALID ACC1', 'ENTROPIES',
]].agg(['mean','std','count'])
df = df.sort_values([('VALID ACC1','mean')], ascending=False)
print(df)
print("########\n")
print("\n#####################################")
print("######## TABLE: ODD METRICS #########")
print("#####################################")
data_frame_list = []
for file in file_names_dict_of_lists['results_odd.csv']:
data_frame_list.append(pd.read_csv(file))
best_results_data_frame = pd.concat(data_frame_list)
best_results_data_frame.to_csv(os.path.join(path, 'all_results_odd.csv'), index=False)
for data in DATASETS:
for model in MODELS:
print("\n#########################################################################################################")
print("#########################################################################################################")
print("#########################################################################################################")
print("#########################################################################################################")
print(data)
print(model)
df = best_results_data_frame.loc[
best_results_data_frame['IN-DATA'].isin([data]) &
best_results_data_frame['MODEL'].isin([model]) &
best_results_data_frame['SCORE'].isin(["MPS","ES","MDS"]) &
best_results_data_frame['OUT-DATA'].isin(['svhn','lsun_resize','imagenet_resize','cifar10'])
]
df = df[['MODEL','IN-DATA','LOSS','SCORE','EXECUTION','OUT-DATA','TNR','AUROC','DTACC','AUIN','AUOUT']]
ndf = df.groupby(['LOSS','SCORE','OUT-DATA'], as_index=False)[['TNR','AUROC']].agg(['mean','std','count'])
#print(ndf)
#print()
ndf = df.groupby(['LOSS','SCORE','OUT-DATA']).agg(
mean_TNR=('TNR', 'mean'), std_TNR=('TNR', 'std'), count_TNR=('TNR', 'count'),
mean_AUROC=('AUROC', 'mean'), std_AUROC=('AUROC', 'std'), count_AUROC=('AUROC', 'count'))
#nndf = nndf.sort_values(['mean_AUROC'], ascending=False)
#print(nndf)
#print()
nndf = ndf.groupby(['LOSS','SCORE']).agg(
mean_mean_TNR=('mean_TNR', 'mean'), mean_std_TNR=('std_TNR', 'mean'), count_mean_TNR=('mean_TNR', 'count'),
mean_mean_AUROC=('mean_AUROC', 'mean'), mean_std_AUROC=('std_AUROC', 'mean'), count_mean_AUROC=('mean_AUROC', 'count'))
nndf = nndf.sort_values(['mean_mean_AUROC'], ascending=False)
print(nndf)
print()
if __name__ == '__main__':
main()