-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdct.py
70 lines (56 loc) · 1.78 KB
/
dct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from numpy import array, empty, allclose, pi, cos, zeros
from scipy.fftpack import fft, dct, idct
from math import sqrt
# My DCT implementation
def mydct2_mono(a):
# N-1
# y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
# n=0
n = len(a)
output = zeros(n)
for k in range(0, n):
for i in range(0, n):
output[k] += a[i]*cos(pi*k*(2*i+1)/(2*n))
output[k] *= 2
# If norm='ortho', y[k] is multiplied by a scaling factor f:
# f = sqrt(1/(4*N)) if k = 0,
# f = sqrt(1/(2*N)) otherwise.
if k==0:
output[k] *= sqrt(1/(4*n))
else:
output[k] *= sqrt(1/(2*n))
return output
def my_dct2(a):
size1=a.shape[0]
size2=a.shape[1]
output = empty([size1, size2])
# DCT2 (DCT by row and then by column)
for i in range(0,size1):
output[i] = mydct2_mono(a[i])
# The [:, n] notation gives access the n-th column
for i in range(0,size2):
output[:, i] = mydct2_mono(output[:, i])
return output
# Wrap 2D SciPy DCT (FTT)
def dct2(a):
size1=a.shape[0]
size2=a.shape[1]
output = empty([size1, size2])
# DCT2 (DCT by row and then by column)
for i in range(0,size1):
output[i] = dct(a[i], 2, norm = 'ortho')
# The [:, n] notation gives access the n-th column
for i in range(0,size2):
output[:, i] = dct(output[:, i], 2, norm = 'ortho')
return output
# Wrap 2D SciPy IDCT2 (FTT)
def idct2(a):
size1=a.shape[0]
size2=a.shape[1]
output = empty([size1, size2])
# by row and then by column
for i in range(0,size2):
output[:, i] = idct(a[:, i], 2, norm = 'ortho')
for i in range(0,size1):
output[i] = idct(output[i], 2, norm = 'ortho')
return output