-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #87 from jargh/main
Ed25519 support and related updates s2n-bignum original commit: awslabs/s2n-bignum@db8409d
- Loading branch information
Showing
28 changed files
with
35,392 additions
and
6,048 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
// SPDX-License-Identifier: Apache-2.0 OR ISC | ||
|
||
// ---------------------------------------------------------------------------- | ||
// Reduce modulo basepoint order, z := x mod n_25519 | ||
// Input x[k]; output z[4] | ||
// | ||
// extern void bignum_mod_n25519 | ||
// (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
// | ||
// Reduction is modulo the order of the curve25519/edwards25519 basepoint, | ||
// which is n_25519 = 2^252 + 27742317777372353535851937790883648493 | ||
// | ||
// Standard ARM ABI: X0 = z, X1 = k, X2 = x | ||
// ---------------------------------------------------------------------------- | ||
#include "_internal_s2n_bignum.h" | ||
|
||
S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_mod_n25519) | ||
S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_mod_n25519) | ||
.text | ||
.balign 4 | ||
|
||
#define z x0 | ||
#define k x1 | ||
#define x x2 | ||
|
||
#define m0 x3 | ||
#define m1 x4 | ||
#define m2 x5 | ||
#define m3 x6 | ||
|
||
#define t0 x7 | ||
#define t1 x8 | ||
#define t2 x9 | ||
#define t3 x10 | ||
|
||
#define n0 x11 | ||
#define n1 x12 | ||
|
||
// These two are aliased: we only load d when finished with q | ||
|
||
#define q x13 | ||
#define d x13 | ||
|
||
// Loading large constants | ||
|
||
#define movbig(nn,n3,n2,n1,n0) \ | ||
movz nn, n0; \ | ||
movk nn, n1, lsl #16; \ | ||
movk nn, n2, lsl #32; \ | ||
movk nn, n3, lsl #48 | ||
|
||
S2N_BN_SYMBOL(bignum_mod_n25519): | ||
|
||
// If the input is already <= 3 words long, go to a trivial "copy" path | ||
|
||
cmp k, #4 | ||
bcc short | ||
|
||
// Otherwise load the top 4 digits (top-down) and reduce k by 4 | ||
// This [m3;m2;m1;m0] is the initial x where we begin reduction. | ||
|
||
sub k, k, #4 | ||
lsl t0, k, #3 | ||
add t0, t0, x | ||
ldp m2, m3, [t0, #16] | ||
ldp m0, m1, [t0] | ||
|
||
// Load the complicated two words of n_25519 = 2^252 + [n1; n0] | ||
|
||
movbig( n0, #0x5812, #0x631a, #0x5cf5, #0xd3ed) | ||
movbig( n1, #0x14de, #0xf9de, #0xa2f7, #0x9cd6) | ||
|
||
// Get the quotient estimate q = floor(x/2^252). | ||
// Also delete it from m3, in effect doing x' = x - q * 2^252 | ||
|
||
lsr q, m3, #60 | ||
and m3, m3, #0x0FFFFFFFFFFFFFFF | ||
|
||
// Multiply [t2;t1;t0] = q * [n1;n0] | ||
|
||
mul t0, n0, q | ||
mul t1, n1, q | ||
umulh t2, n0, q | ||
adds t1, t1, t2 | ||
umulh t2, n1, q | ||
adc t2, t2, xzr | ||
|
||
// Subtract [m3;m2;m1;m0] = x' - q * [n1;n0] = x - q * n_25519 | ||
|
||
subs m0, m0, t0 | ||
sbcs m1, m1, t1 | ||
sbcs m2, m2, t2 | ||
sbcs m3, m3, xzr | ||
|
||
// If this borrows (CF = 0 because of inversion), add back n_25519. | ||
// The masked n3 digit exploits the fact that bit 60 of n0 is set. | ||
|
||
csel t0, n0, xzr, cc | ||
csel t1, n1, xzr, cc | ||
adds m0, m0, t0 | ||
adcs m1, m1, t1 | ||
and t0, t0, #0x1000000000000000 | ||
adcs m2, m2, xzr | ||
adc m3, m3, t0 | ||
|
||
// Now do (k-4) iterations of 5->4 word modular reduction. Each one | ||
// is similar to the sequence above except for the more refined quotient | ||
// estimation process. | ||
|
||
cbz k, writeback | ||
|
||
loop: | ||
|
||
// Assume that the new 5-digit x is 2^64 * previous_x + next_digit. | ||
// Get the quotient estimate q = max (floor(x/2^252)) (2^64 - 1) | ||
// and first compute x' = x - 2^252 * q. | ||
|
||
extr q, m3, m2, #60 | ||
and m2, m2, #0x0FFFFFFFFFFFFFFF | ||
sub q, q, m3, lsr #60 | ||
and m3, m3, #0xF000000000000000 | ||
add m2, m2, m3 | ||
|
||
// Multiply [t2;t1;t0] = q * [n1;n0] | ||
|
||
mul t0, n0, q | ||
mul t1, n1, q | ||
umulh t2, n0, q | ||
adds t1, t1, t2 | ||
umulh t2, n1, q | ||
adc t2, t2, xzr | ||
|
||
// Decrement k and load the next digit (note that d aliases to q) | ||
|
||
sub k, k, #1 | ||
ldr d, [x, k, lsl #3] | ||
|
||
// Subtract [t3;t2;t1;t0] = x' - q * [n1;n0] = x - q * n_25519 | ||
|
||
subs t0, d, t0 | ||
sbcs t1, m0, t1 | ||
sbcs t2, m1, t2 | ||
sbcs t3, m2, xzr | ||
|
||
// If this borrows (CF = 0 because of inversion), add back n_25519. | ||
// The masked n3 digit exploits the fact that bit 60 of n1 is set. | ||
|
||
csel m0, n0, xzr, cc | ||
csel m1, n1, xzr, cc | ||
adds m0, t0, m0 | ||
and m3, m1, #0x1000000000000000 | ||
adcs m1, t1, m1 | ||
adcs m2, t2, xzr | ||
adc m3, t3, m3 | ||
|
||
cbnz k, loop | ||
|
||
// Finally write back [m3;m2;m1;m0] and return | ||
|
||
writeback: | ||
stp m0, m1, [z] | ||
stp m2, m3, [z, #16] | ||
ret | ||
|
||
// Short case: just copy the input with zero-padding | ||
|
||
short: | ||
mov m0, xzr | ||
mov m1, xzr | ||
mov m2, xzr | ||
mov m3, xzr | ||
|
||
cbz k, writeback | ||
ldr m0, [x] | ||
subs k, k, #1 | ||
beq writeback | ||
ldr m1, [x, #8] | ||
subs k, k, #1 | ||
beq writeback | ||
ldr m2, [x, #16] | ||
b writeback | ||
|
||
#if defined(__linux__) && defined(__ELF__) | ||
.section .note.GNU-stack,"",%progbits | ||
#endif |
Oops, something went wrong.