Skip to content

Commit

Permalink
Merge branch 's2n-bignum-2023-11-15' into aws-lc-s2n-bignum-update-20…
Browse files Browse the repository at this point in the history
…23-11-15
  • Loading branch information
torben-hansen committed Nov 15, 2023
2 parents 616c407 + 86cc518 commit e140013
Show file tree
Hide file tree
Showing 30 changed files with 69,637 additions and 4,434 deletions.
186 changes: 186 additions & 0 deletions third_party/s2n-bignum/arm/curve25519/bignum_mod_n25519.S
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC

// ----------------------------------------------------------------------------
// Reduce modulo basepoint order, z := x mod n_25519
// Input x[k]; output z[4]
//
// extern void bignum_mod_n25519
// (uint64_t z[static 4], uint64_t k, uint64_t *x);
//
// Reduction is modulo the order of the curve25519/edwards25519 basepoint,
// which is n_25519 = 2^252 + 27742317777372353535851937790883648493
//
// Standard ARM ABI: X0 = z, X1 = k, X2 = x
// ----------------------------------------------------------------------------
#include "_internal_s2n_bignum.h"

S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_mod_n25519)
S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_mod_n25519)
.text
.balign 4

#define z x0
#define k x1
#define x x2

#define m0 x3
#define m1 x4
#define m2 x5
#define m3 x6

#define t0 x7
#define t1 x8
#define t2 x9
#define t3 x10

#define n0 x11
#define n1 x12

// These two are aliased: we only load d when finished with q

#define q x13
#define d x13

// Loading large constants

#define movbig(nn,n3,n2,n1,n0) \
movz nn, n0; \
movk nn, n1, lsl #16; \
movk nn, n2, lsl #32; \
movk nn, n3, lsl #48

S2N_BN_SYMBOL(bignum_mod_n25519):

// If the input is already <= 3 words long, go to a trivial "copy" path

cmp k, #4
bcc short

// Otherwise load the top 4 digits (top-down) and reduce k by 4
// This [m3;m2;m1;m0] is the initial x where we begin reduction.

sub k, k, #4
lsl t0, k, #3
add t0, t0, x
ldp m2, m3, [t0, #16]
ldp m0, m1, [t0]

// Load the complicated two words of n_25519 = 2^252 + [n1; n0]

movbig( n0, #0x5812, #0x631a, #0x5cf5, #0xd3ed)
movbig( n1, #0x14de, #0xf9de, #0xa2f7, #0x9cd6)

// Get the quotient estimate q = floor(x/2^252).
// Also delete it from m3, in effect doing x' = x - q * 2^252

lsr q, m3, #60
and m3, m3, #0x0FFFFFFFFFFFFFFF

// Multiply [t2;t1;t0] = q * [n1;n0]

mul t0, n0, q
mul t1, n1, q
umulh t2, n0, q
adds t1, t1, t2
umulh t2, n1, q
adc t2, t2, xzr

// Subtract [m3;m2;m1;m0] = x' - q * [n1;n0] = x - q * n_25519

subs m0, m0, t0
sbcs m1, m1, t1
sbcs m2, m2, t2
sbcs m3, m3, xzr

// If this borrows (CF = 0 because of inversion), add back n_25519.
// The masked n3 digit exploits the fact that bit 60 of n0 is set.

csel t0, n0, xzr, cc
csel t1, n1, xzr, cc
adds m0, m0, t0
adcs m1, m1, t1
and t0, t0, #0x1000000000000000
adcs m2, m2, xzr
adc m3, m3, t0

// Now do (k-4) iterations of 5->4 word modular reduction. Each one
// is similar to the sequence above except for the more refined quotient
// estimation process.

cbz k, writeback

loop:

// Assume that the new 5-digit x is 2^64 * previous_x + next_digit.
// Get the quotient estimate q = max (floor(x/2^252)) (2^64 - 1)
// and first compute x' = x - 2^252 * q.

extr q, m3, m2, #60
and m2, m2, #0x0FFFFFFFFFFFFFFF
sub q, q, m3, lsr #60
and m3, m3, #0xF000000000000000
add m2, m2, m3

// Multiply [t2;t1;t0] = q * [n1;n0]

mul t0, n0, q
mul t1, n1, q
umulh t2, n0, q
adds t1, t1, t2
umulh t2, n1, q
adc t2, t2, xzr

// Decrement k and load the next digit (note that d aliases to q)

sub k, k, #1
ldr d, [x, k, lsl #3]

// Subtract [t3;t2;t1;t0] = x' - q * [n1;n0] = x - q * n_25519

subs t0, d, t0
sbcs t1, m0, t1
sbcs t2, m1, t2
sbcs t3, m2, xzr

// If this borrows (CF = 0 because of inversion), add back n_25519.
// The masked n3 digit exploits the fact that bit 60 of n1 is set.

csel m0, n0, xzr, cc
csel m1, n1, xzr, cc
adds m0, t0, m0
and m3, m1, #0x1000000000000000
adcs m1, t1, m1
adcs m2, t2, xzr
adc m3, t3, m3

cbnz k, loop

// Finally write back [m3;m2;m1;m0] and return

writeback:
stp m0, m1, [z]
stp m2, m3, [z, #16]
ret

// Short case: just copy the input with zero-padding

short:
mov m0, xzr
mov m1, xzr
mov m2, xzr
mov m3, xzr

cbz k, writeback
ldr m0, [x]
subs k, k, #1
beq writeback
ldr m1, [x, #8]
subs k, k, #1
beq writeback
ldr m2, [x, #16]
b writeback

#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif
65 changes: 65 additions & 0 deletions third_party/s2n-bignum/arm/curve25519/bignum_neg_p25519.S
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC

// ----------------------------------------------------------------------------
// Negate modulo p_25519, z := (-x) mod p_25519, assuming x reduced
// Input x[4]; output z[4]
//
// extern void bignum_neg_p25519
// (uint64_t z[static 4], uint64_t x[static 4]);
//
// Standard ARM ABI: X0 = z, X1 = x
// ----------------------------------------------------------------------------
#include "_internal_s2n_bignum.h"

S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_neg_p25519)
S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_neg_p25519)
.text
.balign 4

#define z x0
#define x x1

#define d0 x2
#define d1 x3
#define d2 x4
#define d3 x5
#define c x6
#define d x7

S2N_BN_SYMBOL(bignum_neg_p25519):

// Load the digits of x and compute [d3;d2;d1;d0] = (2^255 - 19) - x
// while also computing c = the OR of the digits of x

ldp d0, d1, [x]
mov d, #-19
orr c, d0, d1
subs d0, d, d0
mov d, #-1
sbcs d1, d, d1
ldp d2, d3, [x, #16]
orr c, c, d2
sbcs d2, d, d2
mov d, #0x7FFFFFFFFFFFFFFF
orr c, c, d3
sbc d3, d, d3

// If in fact c = 0 then the result is zero, otherwise the main result

cmp c, xzr
csel d0, d0, xzr, ne
csel d1, d1, xzr, ne
csel d2, d2, xzr, ne
csel d3, d3, xzr, ne

// Write back result and return

stp d0, d1, [z]
stp d2, d3, [z, #16]

ret

#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif
Loading

0 comments on commit e140013

Please sign in to comment.