-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodelrun_onehouse17052019.R
368 lines (319 loc) · 13.9 KB
/
modelrun_onehouse17052019.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# setwd("Q:/AirQual/Research/CONA/Hobart/2018/BushfireStudy/")
# df <- read.csv("house 22 IL results.csv",
# stringsAsFactors = F)
df <- odin10min[which(odin10min$HouseID == 24),]
df$date <- dmy_hm(df$date)
df$pm2.5corr.in <- ifelse(df$pm2.5.in <= df$pm10.in, df$pm2.5.in, NA)
df$pm2.5corr.out <- ifelse(df$pm2.5.in <= df$pm10.in, df$pm2.5.out, NA)
h22 <- df#smog10min[which(smog10min$HouseID == 22),]
h22 <- h22[which(h22$InterventionType == "HEPA"),]
h22 <- h22[,c(1,2,8,14,15,16)]
# h22$dateOnly <- as.Date(h22$date)
# h22$grouping <- cut(h22$dateOnly, 4, labels = F)
# h22 <- merge(df,h22, by = "date", all = T)
## peak detection #####
# peakdet <- function(v, delta, x = NULL) {
# maxtab <- NULL
# mintab <- NULL
#
# if (is.null(x))
# {
# x <- seq_along(v)
# }
#
# if (length(v) != length(x))
# {
# stop("Input vectors v and x must have the same length")
# }
#
# if (!is.numeric(delta))
# {
# stop("Input argument delta must be numeric")
# }
#
# if (delta <= 0)
# {
# stop("Input argument delta must be positive")
# }
#
# mn <- Inf
# mx <- -Inf
#
# mnpos <- NA
# mxpos <- NA
#
# lookformax <- TRUE
#
# for(i in seq_along(v))
# {
# this <- v[i]
#
# if (this > mx & !is.na(this))
# {
# mx <- this
# mxpos <- x[i]
# }
#
# if (this < mn & !is.na(this))
# {
# mn <- this
# mnpos <- x[i]
# }
#
# if (lookformax & !is.na(this))
# {
# if ((this < mx - delta) & (!is.na(this)))
# {
# maxtab <- rbind(maxtab, data.frame(pos = mxpos, val = mx))
#
# mn <- this
# mnpos <- x[i]
#
# lookformax <- FALSE
# }
# }
# else
# {
# if ((this > mn + delta) & (!is.na(this)))
# {
# mintab <- rbind(mintab, data.frame(pos = mnpos, val = mn))
#
# mx <- this
# mxpos <- x[i]
#
# lookformax <- TRUE
# }
# }
# }
#
# list(maxtab = maxtab, mintab = mintab)
# }
#
# df$date <- ymd_hms(df$date)
# df10min <- timeAverage(df, avg.time = "10 min", type = "InterventionType")
# df <- df10min
# df$jump <- c(NA, abs(diff(df$pm2.5corr.in)))
# df$pm2.5corr.in2 <- ifelse(df$jump >50 | is.na(df$pm2.5corr.in), NA, df$pm2.5corr.in)
# peaks <- peakdet(df$pm2.5corr.in, 10, df$date)
#
# peaks.df <- peaks$maxtab
#
# colnames(peaks.df) = c("date", "peakvalue")
# df <- merge(df,peaks.df, by = "date", all = T)
#
# plot(df$pm2.5corr.in~df$date, type = "l", col = "blue",
# main = "All peaks detected")
# points(df$date, df$peakvalue)
### function to calculate sum of square of errors ####
fn <- function(par) {
x <- par[1]
y <- par[2]
vectorc <- ind + x*((y*out) - ind)
return(sqrt(sum((vectorb - vectorc)^2, na.rm = T)))
}
# fn(c(0.2,0.99))
fit.params <- data.frame(HouseID = NA,
InterventionType = NA,
initial.AIF = NA,
optim.AIF = NA,
optim.corr.factor = NA)
AIF <- 0.02# seq(0.02,0.2, 0.01) ## Air Infiltration Factor per 10 minutes
aif <- 1
## initiate list count
k <- 1
# v = 2
# ### PDF path ###
# PDFfile <- paste0(path,"Models_InterventionType_SMOG_newmodel02052019.pdf")
# pdf(file=PDFfile, paper = "USr", width = 28)
# dev.off()
smog.cur <- h22
visit.list <- split(smog.cur, smog.cur$grouping)
for(i in 1:length(visit.list)) {
corr.factor <- 0.9 ## correction factor for differences between two dust sensors
smog <- smog.cur#visit.list[[i]]
smog <- smog[complete.cases(smog$pm2.5corr.out),] ### model only data with outdoor data available
## picking a clean dataset for modelling
smog$pm2.5.inClean <-ifelse(smog$pm2.5corr.in>50, NA, smog$pm2.5corr.in)
smog$io.ratio <- smog$pm2.5corr.in/ smog$pm2.5corr.out ## I/O ratios
NonNAindex <- which(!is.na(smog$pm2.5.inClean))
firstNonNA <- min(NonNAindex)
## start the modelling with one indoor value in the beginning, pre-defined AIF and corr.factor ###
smog$modelled <- rep(NA, nrow(smog))
smog$modelled[firstNonNA] <- smog$pm2.5.inClean[firstNonNA]
### column with initial concentrations loaded ###
for (j in (firstNonNA+1):nrow(smog)){
base.value <- smog$modelled[(j-1)]
out.value <- smog$pm2.5corr.out[(j)] ### CHAMGE IT ALL OVER
# smog$modelled[j] <- corr.factor*(base.value + AIF[aif]*(out.value - base.value))
smog$modelled[j] <- base.value + AIF[aif]*((corr.factor*out.value) - base.value)
}
### censor all indoor sources by setting an arbitrary threshold ####
smog$censored <- ifelse((smog$pm2.5.inClean - smog$modelled) > 20, NA,smog$pm2.5corr.in)
smog$censored.only <- ifelse((smog$pm2.5.inClean - smog$modelled) > 20, "censored","uncensored")
smog$fit.error <- (smog$censored - smog$modelled)^2
count.censored <- as.data.table(table(smog$censored.only))
colnames(count.censored) <- c("censored","count")
count.censored <- count.censored[which(count.censored$censored == "censored"),]
count.censored$aif <- AIF[aif]
count.censored$HouseID<- unique(smog$HouseID)
#### optimise the model parameters AIF and corr.factor based on rmse#####
vectorb <- smog$censored ## censored original data to compare against ###
ind <- lag(smog$censored) ### previous value in the model for initial conc. ###
out <- smog$pm2.5corr.out### outdoor odin values ####
### perform optimisation #####
results <- optim(c(AIF[aif], 0.9), fn)
fit1 <- data.frame(HouseID = smog$HouseID[1],
InterventionType = smog$InterventionType[1],
initial.AIF = AIF[aif],
optim.AIF = results$par[1],
optim.corr.factor = results$par[2])
fit.params <- rbind(fit.params,fit1)
### re-modelling using optimised values #####
smog$optim.model <- rep(NA,nrow(smog))
smog$optim.model[firstNonNA] <-smog$pm2.5.inClean[firstNonNA]
### column with new factor loaded ###
for (j in (firstNonNA+1):nrow(smog)){
base.value <- smog$optim.model[(j-1)]
out.value <- smog$pm2.5corr.out[(j)]
# smog$optim.model[j] <- results$par[2]*(base.value + results$par[1]*(out.value - base.value))
smog$optim.model[j] <-base.value + results$par[1]*((results$par[2]*out.value) - base.value)
}
smog$original.aif <- rep(AIF[aif], nrow(smog))
smog$original.corr.factor <- rep(corr.factor, nrow(smog))
smog$optim.aif <- rep(results$par[1], nrow(smog))
smog$optim.corr.fac <- rep(results$par[2], nrow(smog))
smog$date <- ymd_hms(smog$date)
p1 <- ggplot(smog) +
geom_line(aes(date, pm2.5corr.in, color = "Actual"), size = 1, alpha = 0.9) +
geom_line(aes(date, pm2.5corr.out, color = "Modelled"), size = 0.5 , alpha = 0.5) +
geom_line(aes(date, optim.model, color = "Optimized Model"), size = 1) +
scale_color_manual(labels = c("Actual Indoor","Actual Outdoor", "Optimised Model"),
values = c("grey", "blue", "red")) +
scale_y_continuous(limits = c(0,30), breaks = seq(0,50,10), name = "PM2.5") +
theme_bw() +
ggtitle(paste("HouseID & Intervention:", smog$HouseID[1],smog$InterventionType[1],": Initial AIF is",
AIF[aif],": \nOptimised AIF is",
round(unique(fit1$optim.AIF),3), "\nCorrection Factor is",
round(unique(fit1$optim.corr.factor)[1],3)))
print(p1)
}
corr.factor <- 0.9 ## correction factor for differences between two dust sensors
smog <- visit.list[[i]]
smog <- smog[complete.cases(smog$pm2.5corr.out),] ### model only data with outdoor data available
## picking a clean dataset for modelling
smog$pm2.5.inClean <-ifelse(smog$pm2.5corr.in>50, NA, smog$pm2.5corr.in)
smog$io.ratio <- smog$pm2.5corr.in/ smog$pm2.5corr.out ## I/O ratios
NonNAindex <- which(!is.na(smog$pm2.5.inClean))
firstNonNA <- min(NonNAindex)
## start the modelling with one indoor value in the beginning, pre-defined AIF and corr.factor ###
smog$modelled <- rep(NA, nrow(smog))
smog$modelled[firstNonNA] <- smog$pm2.5.inClean[firstNonNA]
### column with initial concentrations loaded ###
for (j in (firstNonNA+1):nrow(smog)){
base.value <- smog$modelled[(j-1)]
out.value <- smog$pm2.5corr.out[(j)] ### CHAMGE IT ALL OVER
# smog$modelled[j] <- corr.factor*(base.value + AIF[aif]*(out.value - base.value))
smog$modelled[j] <- base.value + AIF[aif]*((corr.factor*out.value) - base.value)
}
### censor all indoor sources by setting an arbitrary threshold ####
smog$censored <- ifelse((smog$pm2.5.inClean - smog$modelled) > 20, NA,smog$pm2.5corr.in)
smog$censored.only <- ifelse((smog$pm2.5.inClean - smog$modelled) > 20, "censored","uncensored")
smog$fit.error <- (smog$censored - smog$modelled)^2
count.censored <- as.data.table(table(smog$censored.only))
colnames(count.censored) <- c("censored","count")
count.censored <- count.censored[which(count.censored$censored == "censored"),]
count.censored$aif <- AIF[aif]
count.censored$HouseID<- unique(smog$HouseID)
#### optimise the model parameters AIF and corr.factor based on rmse#####
vectorb <- smog$censored ## censored original data to compare against ###
ind <- lag(smog$censored) ### previous value in the model for initial conc. ###
out <- smog$pm2.5corr.out### outdoor odin values ####
### perform optimisation #####
results <- optim(c(AIF[aif], 0.9), fn)
fit1 <- data.frame(HouseID = smog$HouseID[1],
InterventionType = smog$InterventionType[1],
initial.AIF = AIF[aif],
optim.AIF = results$par[1],
optim.corr.factor = results$par[2])
fit.params <- rbind(fit.params,fit1)
### re-modelling using optimised values #####
smog$optim.model <- rep(NA,nrow(smog))
smog$optim.model[firstNonNA] <-smog$pm2.5.inClean[firstNonNA]
### column with new factor loaded ###
for (j in (firstNonNA+1):nrow(smog)){
base.value <- smog$optim.model[(j-1)]
out.value <- smog$pm2.5corr.out[(j)]
# smog$optim.model[j] <- results$par[2]*(base.value + results$par[1]*(out.value - base.value))
smog$optim.model[j] <-base.value + results$par[1]*((results$par[2]*out.value) - base.value)
}
smog$original.aif <- rep(AIF[aif], nrow(smog))
smog$original.corr.factor <- rep(corr.factor, nrow(smog))
smog$optim.aif <- rep(results$par[1], nrow(smog))
smog$optim.corr.fac <- rep(results$par[2], nrow(smog))
smog$date <- ymd_hms(smog$date)
p1 <- ggplot(smog) +
geom_line(aes(date, pm2.5corr.in, color = "Actual"), size = 1, alpha = 0.8) +
# geom_line(aes(date, modelled, color = "Modelled"), size = 1) +
geom_line(aes(date, optim.model, color = "Optimized Model"), size = 1) +
scale_color_manual(labels = c("Actual", "Optimised Model"),
values = c("grey", "red", "blue")) +
scale_y_continuous(limits = c(0,30), breaks = seq(0,50,10), name = "PM2.5") +
theme_bw() +
ggtitle(paste("HouseID & Intervention:", smog$HouseID[1],smog$InterventionType[1],": Initial AIF is",
AIF[aif],": \nOptimised AIF is",
round(unique(fit1$optim.AIF),3), "\nCorrection Factor is",
round(unique(fit1$optim.corr.factor)[1],3)))
p1
ggplot(smog) +
geom_point(aes(optim.model,model.IN)) +
theme_bw() +
geom_abline(aes(slope = 1, intercept = 0), color = "red", size = 2)+
labs(y = "Ian's Model", x = "Ayushi's Model",
title = "Ian = 1.09Ayushi + 0.1 || R-squared = 0.9889")
summary(lm(model.IN~optim.model, data = smog))
p2 <- ggplot(df[which(df$Visitno == 1),]) +
geom_line(aes(date, pm2.5corr.out, color = "Outdoor"), size = 1) +
geom_line(aes(date, pm2.5corr.in, color = "Indoor"), size = 1) +
theme_bw() +
ggtitle(paste("HouseID :", smog$houseID[1],"& Intervention:",df$InterventionType[1]))
ggplotly(p2)
baseline <- smog
smog <- df[which(df$InterventionType == "HEPA"),]
intervention <- smog#df[which(df$Visitno == 1),
smog <- intervention
smog <- smog[complete.cases(smog$pm2.5corr.out),] ### model only data with outdoor data available
corr.factor <- 0.257 ## correction factor for differences between two dust sensors
aif <- 0.115
## picking a clean dataset for modelling
smog$pm2.5.inClean <-ifelse(smog$pm2.5corr.in>50, NA, smog$pm2.5corr.in)
smog$io.ratio <- smog$pm2.5corr.in/ smog$pm2.5corr.out ## I/O ratios
NonNAindex <- which(!is.na(smog$pm2.5.inClean))
firstNonNA <- min(NonNAindex)
## start the modelling with one indoor value in the beginning, pre-defined AIF and corr.factor ###
smog$modelled <- rep(NA, nrow(smog))
smog$modelled[firstNonNA] <- smog$pm2.5.inClean[firstNonNA]
### column with initial concentrations loaded ###
for (j in (firstNonNA+1):nrow(smog)){
base.value <- smog$modelled[(j-1)]
out.value <- smog$pm2.5corr.out[j]
# smog$modelled[j] <- corr.factor*(base.value + AIF[aif]*(out.value - base.value))
smog$modelled[j] <- base.value + aif*((corr.factor*out.value) - base.value)
}
smog$optim.model_AllBaseline <- smog$modelled
p3 <- ggplot(smog) +
geom_line(aes(date, pm2.5corr.in, color = "Actual"), size = 1) +
geom_line(aes(date, optim.model_group1, color = "Modelled1"), size = 1) +
geom_line(aes(date, optim.model_group2, color = "Modelled2"), size = 1) +
geom_line(aes(date, optim.model_group3, color = "Modelled3"), size = 1) +
geom_line(aes(date, optim.model_group4, color = "Modelled4"), size = 1) +
geom_line(aes(date, optim.model_AllBaseline, color = "Modelled5"), size = 1) +
scale_color_manual(labels = c("Actual", "Group1",
"Group2","Group3",
"Group4","AllBaseline"),
values = c("grey","blue", "blue2","blue3",
"blue4","maroon")) +
scale_y_continuous(limits = c(0,10), breaks = seq(0,20,1), name = "PM2.5") +
theme_bw() +
ggtitle(paste("HouseID & Intervention:", smog$HouseID[1],smog$InterventionType[1]))
p3
write.csv(smog, "./House24_modeltrials.csv", row.names = F)