The Mamba-360 framework is a collection of State Space Models in various Domains.
@article{patro2024mamba,
title={Mamba-360: Survey of State Space Models as Transformer Alternative for Long Sequence Modelling: Methods, Applications, and Challenges},
author={Patro, Badri Narayana and Agneeswaran, Vijay Srinivas},
journal={arXiv preprint arXiv:2404.16112},
year={2024}
}
New-Generation Network Architectures | ||
Basic State Space Model | ||
Mamba Structure of Selective SSM | ||
Mamba Structure of Selective SSM Algo | ||
Mamba-360: Survey of State Space Models as Transformer Alternative |
Publication | Paper | Github |
---|---|---|
Arxiv 24.04.15 | State Space Model for New-Generation Network Alternative to Transformers: A Survey | Github |
Arxiv 24.04.24 | A Survey on Visual Mamba | [Github] |
Arxiv 24.04.24 | Mamba-360: Survey of State Space Models as Transformer Alternative for Long Sequence Modelling: Methods, Applications, and Challenges | Github |
Arxiv 24.04.29 | A Survey on Vision Mamba: Models, Applications and Challenges | Github |
Publication | Paper | Figure | Github |
---|---|---|---|
Arxiv 24.01.17 | Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model | Github | |
Arxiv 24.01.18 | VMamba: Visual State Space Model | Github | |
Arxiv 24.02.08 | Mamba-ND: Selective State Space Modeling for Multi-Dimensional Data | Github | |
Arxiv 24.03.14 | LocalMamba: Visual State Space Model with Windowed Selective Scan | Github | |
Arxiv 24.03.15 | EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba | Github | |
Arxiv 24.03.22 | SiMBA: Simplified Mamba-based Architecture for Vision and Multivariate Time series | Github | |
Arxiv 24.03.26 | PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition | Github |
Publication | Paper | Figure | Github |
---|---|---|---|
Arxiv 24.03.22 | SiMBA: Simplified Mamba-based Architecture for Vision and Multivariate Time series | Github | |
Arxiv 24.03.17 | S-mamba: Is Mamba Effective for Time Series Forecasting? | Github | |
Arxiv 24.04.14 | TimeMachine: A Time Series is Worth 4 Mambas for Long-term Forecasting | Github | |
Arxiv 24.02.29 | MambaStock: Selective state space model for stock prediction | Github | |
Arxiv 24.04.24 | Bi-Mamba4TS: Bidirectional Mamba for Time Series Forecasting | - |
Publication | Paper | Figure | Github |
---|---|---|---|
Arxiv 24.03.19 | STG-Mamba: Spatial-Temporal Graph Learning via Selective State Space Model | - | |
Arxiv 24.02.13 | Graph Mamba: Towards Learning on Graphs with State Space Models | Github | |
Arxiv 24.02.01 | Graph-Mamba: Towards long-range graph sequence modeling with selective state spaces | Github | |
Arxiv 23.12.03 | Recurrent Distance Filtering for Graph Representation Learning | - | |
Arxiv 22.11.21 | Modeling multivariate biosignals with graph neural networks and structured state space models | Github |
Publication | Paper | Figure | Github |
---|---|---|---|
Arxiv 24.01.16 | MambaTab: A Simple Yet Effective Approach for Handling Tabular Data | Github |
Publication | Paper | Figure | Github |
---|---|---|---|
Arxiv 24.01.25 | Vivim: a Video Vision Mamba for Medical Video Object Segmentation | Github | |
Arxiv 24.03.11 | VideoMamba: State Space Model for Efficient Video Understanding | Github | |
Arxiv 24.03.14 | Video Mamba Suite: State Space Model as a Versatile Alternative for Video Understanding | Github | |
Arxiv 24.04.09 | RhythmMamba: Fast Remote Physiological Measurement with Arbitrary Length Videos | Github | |
Arxiv 24.04.11 | Simba: Mamba augmented U-ShiftGCN for Skeletal Action Recognition in Videos | ||
Arxiv 24.04.01 | SpikeMba: Multi-Modal Spiking Saliency Mamba for Temporal Video Grounding | <img width="697" alt="image" src="https://github.com/badripatro/Awesome-Mamba-360/assets/16630972/d9c13efa-a3a9-4ca8-aadc-d97b62d46187" | Github |
Arxiv 24.03.12 | SSM Meets Video Diffusion Models: Efficient Video Generation with Structured State Spaces | Github |
Publication | Paper | Figure | Github |
---|---|---|---|
Arxiv 24.04.02 | SPMamba: State-space model is all you need in speech separation | Github | |
Arxiv 24.03.27 | Dual-path Mamba: Short and Long-term Bidirectional Selective Structured State Space Models for Speech Separation |
Publication | Paper | Figure | Github |
---|---|---|---|
Arxiv 24.03.29 | HARMamba: Efficient Wearable Sensor Human Activity Recognition Based on Bidirectional Selective SSM | Github | |
Arxiv 24.03.25 | VMRNN: Integrating Vision Mamba and LSTM for Efficient and Accurate Spatiotemporal Forecasting | Github |
Publication | Paper | Figure | Github |
---|---|---|---|
Arxiv 24.03.27 | RankMamba Benchmarking Mamba's Document Ranking Performance in the Era of Transformers | Github | |
Arxiv 24.02.26 | Densemamba: State space models with dense hidden connection for efficient large language models | [Github] (https://github.com/WailordHe/DenseSSM) | |
Arxiv 24.02.05 | Is Mamba Capable of In-Context Learning? | [Github] (https://github.com/yyyujintang/VMRNN-PyTorch) |
Publication | Paper | Figure | Github |
---|---|---|---|
Arxiv 24.03.29 | Decision Mamba: Reinforcement Learning via Sequence Modeling with Selective State Spaces | Github |