forked from tetterl/pmstereo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkernels-simd_v23.hpp
777 lines (706 loc) · 30.1 KB
/
kernels-simd_v23.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
#include <algorithm>
#include <cstring> // for memcpy
#include <iostream>
#include <limits>
#include <random>
#include <immintrin.h>
#include "base_kernel.hpp"
#include "helpers.hpp" // needed for init
#include "parameters.hpp"
/**
* Based on simd_v22
* improved version with less latency
*/
namespace pm{
namespace simd_v23{
#ifdef __INTEL_COMPILER
#else
/// not in gcc header
#ifdef __GNUC__
/// https://clang.llvm.org/doxygen/avxintrin_8h_source.html
static __inline __m256
_mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
{
__m256 __v256 = _mm256_castps128_ps256(_mm_loadu_ps(__addr_lo));
return _mm256_insertf128_ps(__v256, _mm_loadu_ps(__addr_hi), 1);
}
#endif
#endif
float precomputed_vals[771];
void setup_exp() {
precomputed_vals[0] = std::exp(0);
for (int i = 1; i < 771; ++i) {
precomputed_vals[i] = std::exp(-i * GAMMA_INV);
}
}
inline float fast_exp(int val) {
// Assume value is in [0,n]
return precomputed_vals[val];
}
// Global random number generator, fixed random seed
std::mt19937 gen(42);
// global array for precomputed weights
// note that the weights are stored sequentially according to the access order
// in boundary regions the weight matrix is not fully filled with valid weights
// the valid weights don't necessarily form a rectangle
float weights[WINDOW_SIZE * WINDOW_SIZE + 8] __attribute__ ((aligned (16))) ;
// maps x location in working view to x location candidatats in other view. x_other_view
// matches the point x_working_view, used for ViewPropagation
std::multimap<int, int> matching_map;
/**
* @brief The View struct
*
* Implementations specif struct, same as common View struct in baseline implementation
*/
struct KernelView{
// All data in this struct is stored in row order
// row order and channels interleaved (R1G1B1A1,R2G2B2A1, ...)
// the alpha channel is always equal to zero
uint8_t* i;
// same as i but stored as float, used for vectorization
float* i_f;
// Gradient
float* g;
// Planes (format: ABC)
// ABC: plane coeffs
float* p;
// cost
float* c;
};
/**
* @brief Checks if a pixel x,y lies within
* the bounding rectangle spanned by lbx, lby,ubx,uby.
*
* @param x
* @param y
* @param lbx
* @param lby
* @param ubx
* @param uby
*
* @return true if inside
*/
inline bool inside(int x, int y, int lbx, int lby, int ubx, int uby) {
return lbx <= x && x < ubx && lby <= y && y < uby;
}
/**
* @brief Computes the cost function m.
*
* @param wv Working view
* @param ov Other view
* @param fp current plane
* @param x current pixel x coord
* @param y current pixel y coord
* @param rows rows in view
* @param cols cols in view
* @param cpv indicates which one is the work view. false: left, false: right
*
* @return matching cost
*/
float mcost(KernelView& wv, KernelView& ov, float* fp, int x, int y, int rows, int cols, int sign,
int qy_start, int qy_end, int qx_start, int qx_end){
#ifdef TIME_MCOST
myInt64 start = start_tsc();
#endif
// check if disparities out of range
float disp_11 = fp[0] * qx_start + fp[1] * qy_start + fp[2];
float disp_21 = fp[0] * qx_end + fp[1] * qy_start + fp[2];
float disp_12 = fp[0] * qx_start + fp[1] * qy_end + fp[2];
float disp_22 = fp[0] * qx_end + fp[1] * qy_end + fp[2];
if(
disp_11 < 0 || disp_11 > max_disp ||
disp_21 < 0 || disp_21 > max_disp ||
disp_12 < 0 || disp_12 > max_disp ||
disp_22 < 0 || disp_22 > max_disp
) {
return std::numeric_limits<float>::infinity();
}
// TODO: store globally or similar?!
__m256 ones = _mm256_set1_ps(1);
__m256i onesi = _mm256_set1_epi32(1);
// from pixel x to pixel x+1 we have a disparity increase of +/-fp[0] and for the shift +1
__m256 match_increase = _mm256_set1_ps(8.f*(1.f+sign*fp[0]));
__m256i eightsi = _mm256_set1_epi32(8);
__m256i trues = _mm256_cmpeq_epi32(eightsi, eightsi);
__m256 fp0 = _mm256_set1_ps(fp[0]);
__m256 fp1 = _mm256_set1_ps(fp[1]);
__m256 fp2 = _mm256_set1_ps(fp[2]);
__m256 zerosf = _mm256_setzero_ps();
__m256i mcols = _mm256_set1_epi32(cols);
__m256 colsm2 = _mm256_set1_ps(cols - 2.f);
__m256 minuszeros = _mm256_set1_ps(-0.f);
__m256 signs = _mm256_set1_ps(sign);
__m256 taucol = _mm256_set1_ps(TAUCOL);
__m256 taugrad = _mm256_set1_ps(TAUGRAD);
__m256i qx_ends = _mm256_set1_epi32(qx_end);
__m256i offset = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
__m256i perm0 = _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0);
__m256i perm1 = _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2);
__m256i perm2 = _mm256_set_epi32(5, 5, 5, 5, 4, 4, 4, 4);
__m256i perm3 = _mm256_set_epi32(7, 7, 7, 7, 6, 6, 6, 6);
__m256i perm_sum = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
// accumulators for cost
// float cost_img_diff = 0.f;
// float cost_grad_diff = 0.f;
__m256 cost_img_diff = _mm256_setzero_ps();
__m256 cost_grad_diff = _mm256_setzero_ps();
float disp_tmp = fp[1] * qy_start + fp[2];
int idx = 0;
alignas(32) int idx_left_tmp[8];
__m256i qdycols = _mm256_set1_epi32(qy_start*cols);
__m256i qx_starts = _mm256_set1_epi32(qx_start);
__m256i qxis_init = _mm256_add_epi32(qx_starts, offset);
__m256 qxs_init = _mm256_cvtepi32_ps(qxis_init);
for(int qy = qy_start; qy <= qy_end; ++qy){
__m256i qxis = qxis_init;
// float disp = fp[0] * qx_start + disp_tmp;
__m256 qys = _mm256_set1_ps(qy);
__m256 disp = _mm256_fmadd_ps(fp1, qys, _mm256_fmadd_ps(fp0, qxs_init, fp2)); // reordered to hide latency
__m256 match_unclamped = _mm256_fmadd_ps(signs, disp, qxs_init);
idx = (qy - qy_start) * (qx_end - qx_start + 1);
for(int qx = qx_start; qx <= qx_end; qx += 8){
// construct mask since we might access elements not in the window, thus clean-up code can be prevented
__m256 mask = reinterpret_cast<const __m256>(_mm256_xor_si256(trues, _mm256_cmpgt_epi32(qxis, qx_ends))); // mask = qxs <= qx_ends
__m256 match = _mm256_max_ps(zerosf, _mm256_min_ps(colsm2, match_unclamped)); // match = match > cols - 2 ? cols - 2 : match < 0 ? 0 : match;
__m256i qdx = _mm256_cvtps_epi32(_mm256_floor_ps(match)); // int qdx = (int)match;
__m256 inv_fac = _mm256_sub_ps(match, _mm256_cvtepi32_ps(qdx)); // float inv_fac = 1.f - wm = match - qdx;
__m256 wm = _mm256_sub_ps(ones, inv_fac); // float wm = 1.f - (match - qdx) = 1.f - inv_fac;
__m256 w = _mm256_loadu_ps(weights + idx); // float w = weights[idx];
w = _mm256_and_ps(w, mask);
// gradient intensity difference between this and other view
// float ovg = wm*ov.g[qdy*cols+qdx] + inv_fac*ov.g[qdy*cols+qdx+1];
__m256i qdy_cols_qdx_left = _mm256_add_epi32(qdycols, qdx);
__m256i qdy_cols_qdx_right = _mm256_add_epi32(qdy_cols_qdx_left, onesi);
__m256 ovg_left = _mm256_mask_i32gather_ps(zerosf, ov.g, qdy_cols_qdx_left, mask, 4);
__m256 ovg_right = _mm256_mask_i32gather_ps(zerosf, ov.g, qdy_cols_qdx_right, mask, 4);
__m256 ovg = _mm256_fmadd_ps(wm, ovg_left, _mm256_mul_ps(inv_fac, ovg_right));
// float iqgnorm = std::abs(wv.g[qy*cols+qx] - ovg);
__m256 wvg = _mm256_loadu_ps(wv.g + qy*cols + qx); // potentially loads too much data -> use mask
__m256 diff_g = _mm256_sub_ps(wvg, ovg);
__m256 iqgnorm = _mm256_andnot_ps(minuszeros, diff_g); // absolute value
/// Start:
/// l1 norm computation (maximum 3/4 usage of simd lanes)
///
// pixel 0-3
__m256i idx_left = _mm256_add_epi32(qdycols, qdx);
idx_left = _mm256_add_epi32(idx_left, idx_left);
idx_left = _mm256_add_epi32(idx_left, idx_left); // times four
_mm256_store_si256((__m256i *)idx_left_tmp, idx_left);
// [R0,G0,B0,A0, R1,G1,B1,A1, R2,G2,B2,A2, R3,G3,B3,A3]
// left: left matching point for weighting
// right: right matching point for weighting
__m256 RGBA0L_RGBA0R_f = _mm256_loadu_ps(ov.i_f + idx_left_tmp[0]);
__m256 RGBA1L_RGBA1R_f = _mm256_loadu_ps(ov.i_f + idx_left_tmp[1]);
__m256 RGBA0R_RGBA1L_f = _mm256_permute2f128_ps(RGBA0L_RGBA0R_f, RGBA1L_RGBA1R_f, 0b00100001);
__m256 RGBA2L_RGBA2R_f = _mm256_loadu_ps(ov.i_f + idx_left_tmp[2]);
__m256 RGBA3L_RGBA3R_f = _mm256_loadu_ps(ov.i_f + idx_left_tmp[3]);
__m256 RGBA2R_RGBA3L_f = _mm256_permute2f128_ps(RGBA2L_RGBA2R_f, RGBA3L_RGBA3R_f, 0b00100001);
__m256 RGBA0_RGBA1_right_f = _mm256_blend_ps(RGBA0R_RGBA1L_f, RGBA1L_RGBA1R_f, 0b11110000);
__m256 RGBA0_RGBA1_left_f = _mm256_blend_ps(RGBA0L_RGBA0R_f, RGBA0R_RGBA1L_f, 0b11110000);
__m256 RGBA2_RGBA3_right_f = _mm256_blend_ps(RGBA2R_RGBA3L_f, RGBA3L_RGBA3R_f, 0b11110000);
__m256 RGBA2_RGBA3_left_f = _mm256_blend_ps(RGBA2L_RGBA2R_f, RGBA2R_RGBA3L_f, 0b11110000);
// work view
__m256 RGBA0_RGBA1_wv_f = _mm256_loadu_ps(wv.i_f + qy*cols*4 + qx*4);
__m256 RGBA2_RGBA3_wv_f = _mm256_loadu_ps(wv.i_f + qy*cols*4 + qx*4 + 8);
// wm = [wm0, wm1, wm2, ..., wm7]
// Goal: [wm0, wm0, wm0, wm0, wm1, wm1, wm1, wm1], [wm2, ..., wm3, ...]
__m256 inv_wm00001111 = _mm256_permutevar8x32_ps(inv_fac, perm0); // AVX2
__m256 wm00001111 = _mm256_sub_ps(ones, inv_wm00001111);
__m256 inv_wm22223333 = _mm256_permutevar8x32_ps(inv_fac, perm1); // AVX2
__m256 wm22223333 = _mm256_sub_ps(ones, inv_wm22223333);
// float vp1 = wm * ov.i[qdy*cols*4+qdx*4 + 0] + inv_fac * ov.i[qdy*cols*4+qdx*4 + 4] - wv.i[qy*cols*4+qx*4 + 0];
// float vp2 = wm * ov.i[qdy*cols*4+qdx*4 + 1] + inv_fac * ov.i[qdy*cols*4+qdx*4 + 5] - wv.i[qy*cols*4+qx*4 + 1];
// float vp3 = wm * ov.i[qdy*cols*4+qdx*4 + 2] + inv_fac * ov.i[qdy*cols*4+qdx*4 + 6] - wv.i[qy*cols*4+qx*4 + 2];
__m256 vp_p0_1 = _mm256_fmadd_ps(wm00001111, RGBA0_RGBA1_left_f, _mm256_fmsub_ps(inv_wm00001111, RGBA0_RGBA1_right_f, RGBA0_RGBA1_wv_f));
__m256 vp_p2_3 = _mm256_fmadd_ps(wm22223333, RGBA2_RGBA3_left_f, _mm256_fmsub_ps(inv_wm22223333, RGBA2_RGBA3_right_f, RGBA2_RGBA3_wv_f));
// float iqnorm = std::abs(vp1) + std::abs(vp2) + std::abs(vp3);
// weighted intensity difference of rgba, absolute value
// [wr0,wg0,wb0,wa0, wr1,wg1,wb1,wa1]
__m256 abs_vp_p0_1 = _mm256_andnot_ps(minuszeros, vp_p0_1);
// [wr2,wg2,wb2,wa2, wr3,wg3,wb3,wa3]
__m256 abs_vp_p2_3 = _mm256_andnot_ps(minuszeros, vp_p2_3);
// sum up
// [wrg0,wba0, wrg2,wba2, wrg1,wba1, wrg3,wba3]
__m256 abs_vp_p0213 = _mm256_hadd_ps(abs_vp_p0_1, abs_vp_p2_3);
/// repeated structure from above (only index changes)
// [R4,G4,B4,A4, R5,G5,B5,A5, R6,G6,B6,A6, R7,G7,B7,A7]
// left: left matching point for weighting
// right: right matching point for weighting
__m256 RGBA4L_RGBA4R_f = _mm256_loadu_ps(ov.i_f + idx_left_tmp[4]);
__m256 RGBA5L_RGBA5R_f = _mm256_loadu_ps(ov.i_f + idx_left_tmp[5]);
__m256 RGBA4R_RGBA5L_f = _mm256_permute2f128_ps(RGBA4L_RGBA4R_f, RGBA5L_RGBA5R_f, 0b00100001);
__m256 RGBA6L_RGBA6R_f = _mm256_loadu_ps(ov.i_f + idx_left_tmp[6]);
__m256 RGBA7L_RGBA7R_f = _mm256_loadu_ps(ov.i_f + idx_left_tmp[7]);
__m256 RGBA6R_RGBA7L_f = _mm256_permute2f128_ps(RGBA6L_RGBA6R_f, RGBA7L_RGBA7R_f, 0b00100001);
__m256 RGBA4_RGBA5_right_f = _mm256_blend_ps(RGBA4R_RGBA5L_f, RGBA5L_RGBA5R_f, 0b11110000);
__m256 RGBA4_RGBA5_left_f = _mm256_blend_ps(RGBA4L_RGBA4R_f, RGBA4R_RGBA5L_f, 0b11110000);
__m256 RGBA6_RGBA7_right_f = _mm256_blend_ps(RGBA6R_RGBA7L_f, RGBA7L_RGBA7R_f, 0b11110000);
__m256 RGBA6_RGBA7_left_f = _mm256_blend_ps(RGBA6L_RGBA6R_f, RGBA6R_RGBA7L_f, 0b11110000);
// work view
__m256 RGBA4_RGBA5_wv_f = _mm256_loadu_ps(wv.i_f + qy*cols*4 + qx*4 + 16);
__m256 RGBA6_RGBA7_wv_f = _mm256_loadu_ps(wv.i_f + qy*cols*4 + qx*4 + 24);
// wm = [wm0, wm1, wm2, ..., wm7]
// Goal: [wm4, wm4, wm4, wm4, wm5, wm5, wm5, wm5], [wm6, ..., wm7, ...]
__m256 inv_wm44445555 = _mm256_permutevar8x32_ps(inv_fac, perm2); // AVX2
__m256 wm44445555 = _mm256_sub_ps(ones, inv_wm44445555);
__m256 inv_wm66667777 = _mm256_permutevar8x32_ps(inv_fac, perm3); // AVX2
__m256 wm66667777 = _mm256_sub_ps(ones, inv_wm66667777);
// float vp1 = wm * ov.i[qdy*cols*4+qdx*4 + 0] + inv_fac * ov.i[qdy*cols*4+qdx*4 + 4] - wv.i[qy*cols*4+qx*4 + 0];
// float vp2 = wm * ov.i[qdy*cols*4+qdx*4 + 1] + inv_fac * ov.i[qdy*cols*4+qdx*4 + 5] - wv.i[qy*cols*4+qx*4 + 1];
// float vp3 = wm * ov.i[qdy*cols*4+qdx*4 + 2] + inv_fac * ov.i[qdy*cols*4+qdx*4 + 6] - wv.i[qy*cols*4+qx*4 + 2];
__m256 vp_p4_5 = _mm256_fmadd_ps(wm44445555, RGBA4_RGBA5_left_f, _mm256_fmsub_ps(inv_wm44445555, RGBA4_RGBA5_right_f, RGBA4_RGBA5_wv_f));
__m256 vp_p6_7 = _mm256_fmadd_ps(wm66667777, RGBA6_RGBA7_left_f, _mm256_fmsub_ps(inv_wm66667777, RGBA6_RGBA7_right_f, RGBA6_RGBA7_wv_f));
// float iqnorm = std::abs(vp1) + std::abs(vp2) + std::abs(vp3);
// weighted intensity difference of rgba, absolute value
// [wr4,wg4,wb4,wa4, wr5,wg5,wb5,wa5]
__m256 abs_vp_p4_5 = _mm256_andnot_ps(minuszeros, vp_p4_5);
// [wr6,wg6,wb6,wa6, wr7,wg7,wb7,wa7]
__m256 abs_vp_p6_7 = _mm256_andnot_ps(minuszeros, vp_p6_7);
// sum up
// [wrg4,wba4, wrg6,wba6, wrg5,wba5, wrg4,wba4]
__m256 abs_vp_p4657 = _mm256_hadd_ps(abs_vp_p4_5, abs_vp_p6_7);
// final sum up
// [wrgba0, wrgba2, wrgba4, wrgba6, wrgba1, wrgba3, wrgba5, wrgba7]
__m256 abs_vp_p02461357 = _mm256_hadd_ps(abs_vp_p0213, abs_vp_p4657);
// shuffle in 01234567 order
__m256 iqnorm = _mm256_permutevar8x32_ps(abs_vp_p02461357, perm_sum);
/// End:
/// l1 norm computation (maximum 3/4 usage of simd lanes)
///
// cost_img_diff += w * std::min(iqnorm,TAUCOL);
// cost_grad_diff += w * std::min(iqgnorm,TAUGRAD);
__m256 clamp_iqnorm = _mm256_min_ps(iqnorm, taucol);
__m256 clamp_iqgnorm = _mm256_min_ps(iqgnorm, taugrad);
// no masking of iqnorm, iqgnorm needed, w is alread masked
cost_img_diff = _mm256_fmadd_ps(w, clamp_iqnorm, cost_img_diff);
cost_grad_diff = _mm256_fmadd_ps(w, clamp_iqgnorm, cost_grad_diff);
match_unclamped = _mm256_add_ps(match_unclamped, match_increase);
qxis = _mm256_add_epi32(qxis, eightsi);
idx += 8; // ++idx
}
disp_tmp += fp[1];
qdycols = _mm256_add_epi32(qdycols, mcols);
}
// accumulators
// reduce to mm256 array
__m256 iiggiigg = _mm256_hadd_ps(cost_img_diff, cost_grad_diff);
__m256 weighting = _mm256_set_ps(ALPHA, ALPHA, ONEMINUSALPHA, ONEMINUSALPHA, ALPHA, ALPHA, ONEMINUSALPHA, ONEMINUSALPHA);
iiggiigg = _mm256_mul_ps(iiggiigg, weighting);
// use: https://stackoverflow.com/questions/6996764/fastest-way-to-do-horizontal-float-vector-sum-on-x86
__m128 vlow = _mm256_castps256_ps128(iiggiigg);
__m128 vhigh = _mm_castsi128_ps(_mm256_extracti128_si256(_mm256_castps_si256(iiggiigg), 1)); // high 128
vlow = _mm_add_ps(vlow, vhigh); // add the low 128
// hsum_ps_sse3
__m128 shuf = _mm_movehdup_ps(vlow); // broadcast elements 3,1 to 2,0
__m128 sums = _mm_add_ps(vlow, shuf);
shuf = _mm_movehl_ps(shuf, sums); // high half -> low half
sums = _mm_add_ss(sums, shuf);
#ifdef TIME_MCOST
myInt64 end = stop_tsc(start);
pm::mcost_total_time_ += end;
pm::mcost_calls_ += 1;
#endif
return _mm_cvtss_f32(sums);
}
void precompute_weights(KernelView& wv, int x, int y, int rows, int cols,
int qy_start, int qy_end, int qx_start, int qx_end) {
int idx = 0;
for(int qy = qy_start; qy <= qy_end; ++qy){
for(int qx = qx_start; qx <= qx_end; ++qx){
// Weight between p and q
int inorm = l1norm_naive(&wv.i[y*cols*4+x*4], &wv.i[qy*cols*4+qx*4]);
weights[idx] = fast_exp(inorm);
++idx;
}
}
}
/**
* @brief Spatial propagation
*
* @param wv Working view
* @param ov Other view
* @param x current x-coord
* @param y current y coord
* @param rows number of rows in view
* @param cols number of cols in view
* @param sign sign for adding/subtracting of disparity
* @param isEven indicates if this is an even iteration (decides which neighbors we look at.
*/
void SpatialPropagation(KernelView& wv, KernelView& ov, int x, int y, int rows, int cols, int sign,
bool isEven, int qy_start, int qy_end, int qx_start, int qx_end){
int n1x,n1y,n2x,n2y;
bool n1in,n2in;
if(isEven){ //odd iteration: right and lower neighbor
n1x = x-1;
n1y = y;
n2x = x;
n2y = y-1;
}else{
n1x = x+1;
n1y = y;
n2x = x;
n2y = y+1;
}
n1in = inside(n1x, n1y, 0, 0, cols, rows);
n2in = inside(n2x, n2y, 0, 0, cols, rows);
//old plane, old cost
float* plane_old = &(wv.p[(y*cols*3)+x*3]);
float* cost_old = &(wv.c[y*cols+x]);
if(n1in){
//neighbor planes
float* plane_new = &(wv.p[(n1y*cols*3)+n1x*3]);
float cost_new = mcost(wv,ov,plane_new,x,y,rows,cols,sign, qy_start, qy_end, qx_start, qx_end);
if(cost_new < *cost_old){
memcpy(plane_old,plane_new,3*sizeof(float));
*cost_old = cost_new;
}
}
if(n2in){
//neighbor planes
float* plane_new = &(wv.p[(n2y*cols*3)+n2x*3]);
float cost_new = mcost(wv,ov,plane_new,x,y,rows,cols,sign, qy_start, qy_end, qx_start, qx_end);
if(cost_new < *cost_old){
memcpy(plane_old,plane_new,3*sizeof(float));
*cost_old = cost_new;
}
}
}
/**
* @brief View propagation step
*
* @param wv Working view
* @param ov Other view
* @param x current x-coord
* @param y current y coord
* @param rows number of rows in view
* @param cols number of cols in view
* @param sign sign for adding/subtracting of disparity
* @param isEven indicates if this is an even iteration (decides which neighbors we look at.
*/
void ViewPropagation(KernelView& wv, KernelView& ov, int x, int y, int rows, int cols, int sign,
bool isEven, int qy_start, int qy_end, int qx_start, int qx_end){
// current plane
float* fp = &wv.p[(y * cols * 3) + x * 3];
auto range = matching_map.equal_range(x);
for (auto i = range.first; i != range.second; ++i) {
int mx = i->first;
int x_other = i->second;
float* fpother = &ov.p[(y * cols * 3) + x_other * 3];
float z = fpother[0] * x_other + fpother[1] * y + fpother[2];
int my = y;
// Copy over same normal. thus a,b will be the same, c will change:
float c = fpother[0] * mx + fpother[1] * my + z;
float new_plane[3] = {fp[0], fp[1], c};
float* cost_old = &(wv.c[y * cols + x]);
float cost_new = mcost(wv, ov, new_plane, x, y, rows, cols, sign, qy_start, qy_end, qx_start, qx_end);
if(cost_new < *cost_old){
//Update the plane
memcpy(fp, &new_plane, 3 * sizeof(float));
*cost_old = cost_new;
}
}
}
/**
* @brief Plane refinement step
*
* @param wv Working view
* @param ov Other view
* @param x current x-coord
* @param y current y coord
* @param rows number of rows in view
* @param cols number of cols in view
* @param sign sign for adding/subtracting of disparity
* @param isEven indicates if this is an even iteration (decides which neighbors we look at.
*/
void PlaneRefinement(KernelView& wv, KernelView& ov, int x, int y, int rows, int cols, int sign,
bool isEven, int qy_start, int qy_end, int qx_start, int qx_end){
float max_dz = max_disp / 2.f;
float max_dn = 1.0f;
float end_dz = 0.1f;
//Current pixel's plane and matching cost
float* plane_old = &wv.p[(y*cols*3)+x*3];
float* cost_old = &(wv.c[y*cols+x]);
float z_old = plane_old[0] * x + plane_old[1] * y + plane_old[2];
// get normal: (-a, -b, 1).normalize()
float norm_inv = 1.f / std::sqrt(plane_old[0]*plane_old[0] + plane_old[1]*plane_old[1] + 1.f);
float nx_old = -plane_old[0] * norm_inv;
float ny_old = -plane_old[1] * norm_inv;
float nz_old = norm_inv;
//Buffer for new plane proposal
float plane[3];
// Searching a random plane starting from the actual one
while(max_dz >= end_dz)
{
std::uniform_real_distribution<float> dz_dis(-max_dz, +max_dz);
std::uniform_real_distribution<float> dn_dis(-max_dn, +max_dn);
// New point
float z = z_old + dz_dis(gen); //delta_z
// New normal
float nx = nx_old + dn_dis(gen);
float ny = ny_old + dn_dis(gen);
float nz = nz_old + dn_dis(gen);
nz = nz == 0.f ? 1e-18f : nz;
//Normalize new normal
float n = sqrt(nx * nx + ny * ny + nz * nz);
nx = nx / n;
ny = ny / n;
nz = nz / n;
// Plane params
plane[0] = -nx / nz;
plane[1] = -ny / nz;
plane[2] = (nx * x + ny * y + nz * z) / nz;
// test the new plane
// old_cost can be moved out of loop, only need it first time
float cost_new = mcost(wv,ov,plane,x,y,rows,cols,sign, qy_start, qy_end, qx_start, qx_end);
if(cost_new < *cost_old){
memcpy(plane_old,&plane,3*sizeof(float));
*cost_old = cost_new;
z_old = z;
nx_old = nx;
ny_old = ny;
nz_old = nz;
}
max_dz /= 2.0f;
max_dn /= 2.0f;
}
}
/**
* @brief update matching_map for ViewPropagation
*
* @param wv Working view
* @param ov Other view
* @param y y-coord
* @param rows rows in view
* @param cols cols in view
* @param sign sign for adding/subtracting of disparity
*/
void updateMap(KernelView& wv, KernelView& ov, int y, int rows, int cols, int sign) {
int mx = 0;
for (int x_other = 0; x_other < cols; ++x_other) {
float* fpother = &ov.p[(y * cols * 3) + x_other * 3];
float z = fpother[0] * x_other + fpother[1] * y + fpother[2];
// compute matching point in work view, note the minus
mx = roundf(x_other - sign * z);
// if matches point in working view (in valid range)
if (mx >= 0 || mx < cols) {
// insert {work view point, other view point}
matching_map.insert({mx, x_other});
}
}
}
/**
* @brief Processes a single pixel
*
* @param wv Working view
* @param ov Other view
* @param x x-coord
* @param y y-coord
* @param rows rows in view
* @param cols cols in view
* @param sign sign for adding/subtracting of disparity
* @param isEven indicates if this is an even iteration (decides which neighbors we look at.
*/
void processPixel(KernelView& wv, KernelView& ov, int x, int y, int rows, int cols, int sign, bool isEven, int init_cost){
int HALF_WIN = WINDOW_SIZE/2;
int qy_start = y - HALF_WIN >= 0 ? y - HALF_WIN : 0;
int qy_end = y + HALF_WIN < rows ? y + HALF_WIN : rows - 1;
int qx_start = x - HALF_WIN >= 0 ? x - HALF_WIN : 0;
int qx_end = x + HALF_WIN < cols ? x + HALF_WIN : cols - 1;
precompute_weights(wv, x, y, rows, cols, qy_start, qy_end, qx_start, qx_end);
if (init_cost > 0) {
float* cc = &(wv.c[(y*cols)+x]);
float* fp = &(wv.p[(y*cols*3)+x*3]);
*cc = mcost(wv,ov,fp,x,y,rows,cols,sign, qy_start, qy_end, qx_start, qx_end);
}
SpatialPropagation(wv,ov, x,y,rows,cols,sign,isEven, qy_start, qy_end, qx_start, qx_end);
ViewPropagation(wv,ov, x,y,rows,cols,sign,isEven, qy_start, qy_end, qx_start, qx_end);
PlaneRefinement(wv,ov, x,y,rows,cols,sign,isEven, qy_start, qy_end, qx_start, qx_end);
}
void process(KernelView& v1, KernelView& v2, int rows, int cols) {
// Eval plane's cost
int init_cost = 2;
std::cout << "PM: evaluated plane cost" << std::endl;
for(int it = 0; it < 3; it++){
std::cout << "Iteration " << it << std::endl;
bool isOdd = it&1;
bool isEven = !isOdd;
for(int work_view=0; work_view < 2; ++work_view){
int sign = (work_view == false) ? -1 : 1; // -1 processing left, +1 processing right
// Work view
KernelView& wv = (work_view == false) ? v1 : v2;
// The "other view"
KernelView& ov = (work_view == false) ? v2 : v1;
if(isEven){
// Top down
for(int y=0;y<rows;y++){
// get candidates
updateMap(wv, ov, y, rows, cols, sign);
if(( y % 50 ) == 0) std::cout << "y:" << y << " / " << rows << std::endl;
for(int x=0;x<cols;x++){
processPixel(wv,ov, x,y,rows,cols,sign,isEven, init_cost);
}
matching_map.clear();
}
--init_cost;
}else{
// Bottom up
for(int y=rows-1; y>=0;--y){
// get candidates
updateMap(wv, ov, y, rows, cols, sign);
if(( y % 50 ) == 0) std::cout << "y:" << y << " / " << rows << std::endl;
for(int x=cols-1;x>=0;--x){
processPixel(wv,ov, x,y,rows,cols,sign,isEven, init_cost);
}
matching_map.clear();
}
--init_cost;
}
}
}
}
class Kernel : public BaseKernel{
public:
// init
Kernel(const CommonView& v1, const CommonView& v2, int rows, int cols) : BaseKernel(rows, cols) {
// use some data of CommonView
// Images
// in the CommonView RGB format is used here we use the RGBA format for easier SIMD processing
v1_.i = static_cast<uint8_t *>(aligned_alloc(16,(rows*cols*4 + 16)*sizeof(uint8_t)));
v2_.i = static_cast<uint8_t *>(aligned_alloc(16,(rows*cols*4 + 16)*sizeof(uint8_t)));
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
v1_.i[y * cols * 4 + x * 4 + 0] = v1.i[y * cols * 3 + x * 3 + 0];
v1_.i[y * cols * 4 + x * 4 + 1] = v1.i[y * cols * 3 + x * 3 + 1];
v1_.i[y * cols * 4 + x * 4 + 2] = v1.i[y * cols * 3 + x * 3 + 2];
v1_.i[y * cols * 4 + x * 4 + 3] = 0;
}
}
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
v2_.i[y * cols * 4 + x * 4 + 0] = v2.i[y * cols * 3 + x * 3 + 0];
v2_.i[y * cols * 4 + x * 4 + 1] = v2.i[y * cols * 3 + x * 3 + 1];
v2_.i[y * cols * 4 + x * 4 + 2] = v2.i[y * cols * 3 + x * 3 + 2];
v2_.i[y * cols * 4 + x * 4 + 3] = 0;
}
}
v1_.i_f = (float*)malloc(rows*cols*4*sizeof(float));
v2_.i_f = (float*)malloc(rows*cols*4*sizeof(float));
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
v1_.i_f[y * cols * 4 + x * 4 + 0] = v1.i[y * cols * 3 + x * 3 + 0];
v1_.i_f[y * cols * 4 + x * 4 + 1] = v1.i[y * cols * 3 + x * 3 + 1];
v1_.i_f[y * cols * 4 + x * 4 + 2] = v1.i[y * cols * 3 + x * 3 + 2];
v1_.i_f[y * cols * 4 + x * 4 + 3] = 0;
}
}
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
v2_.i_f[y * cols * 4 + x * 4 + 0] = v2.i[y * cols * 3 + x * 3 + 0];
v2_.i_f[y * cols * 4 + x * 4 + 1] = v2.i[y * cols * 3 + x * 3 + 1];
v2_.i_f[y * cols * 4 + x * 4 + 2] = v2.i[y * cols * 3 + x * 3 + 2];
v2_.i_f[y * cols * 4 + x * 4 + 3] = 0;
}
}
// Gradients
v1_.g = static_cast<float *>(aligned_alloc(16, (rows*cols + 8)*sizeof(float)));
v2_.g = static_cast<float *>(aligned_alloc(16, (rows*cols + 8)*sizeof(float)));
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
v1_.g[y * cols + x] = v1.g[y * cols + x];
v2_.g[y * cols + x] = v2.g[y * cols + x];
}
}
// Planes
v1_.p = (float*)malloc(rows*cols*3*sizeof(float));
v2_.p = (float*)malloc(rows*cols*3*sizeof(float));
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
v1_.p[y * cols * 3 + x * 3 + 0] = v1.p[y * cols * 9 + x * 9 + 0];
v1_.p[y * cols * 3 + x * 3 + 1] = v1.p[y * cols * 9 + x * 9 + 1];
v1_.p[y * cols * 3 + x * 3 + 2] = v1.p[y * cols * 9 + x * 9 + 2];
}
}
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
v2_.p[y * cols * 3 + x * 3 + 0] = v2.p[y * cols * 9 + x * 9 + 0];
v2_.p[y * cols * 3 + x * 3 + 1] = v2.p[y * cols * 9 + x * 9 + 1];
v2_.p[y * cols * 3 + x * 3 + 2] = v2.p[y * cols * 9 + x * 9 + 2];
}
}
// Costs
v1_.c = v1.c;
v2_.c = v2.c;
// precompute exp values
setup_exp();
}
void run_patch_match() {
process(v1_, v2_, rows_, cols_);
}
void update_common_view(CommonView& v1, CommonView& v2) const {
for (int y = 0; y < rows_; ++y) {
for (int x = 0; x < cols_; ++x) {
v1.p[y * cols_ * 9 + x * 9 + 0] = v1_.p[y * cols_ * 3 + x * 3 + 0];
v1.p[y * cols_ * 9 + x * 9 + 1] = v1_.p[y * cols_ * 3 + x * 3 + 1];
v1.p[y * cols_ * 9 + x * 9 + 2] = v1_.p[y * cols_ * 3 + x * 3 + 2];
}
}
for (int y = 0; y < rows_; ++y) {
for (int x = 0; x < cols_; ++x) {
v2.p[y * cols_ * 9 + x * 9 + 0] = v2_.p[y * cols_ * 3 + x * 3 + 0];
v2.p[y * cols_ * 9 + x * 9 + 1] = v2_.p[y * cols_ * 3 + x * 3 + 1];
v2.p[y * cols_ * 9 + x * 9 + 2] = v2_.p[y * cols_ * 3 + x * 3 + 2];
}
}
}
std::pair<float, float> test_mcost(int x, int y) {
int HALF_WIN = WINDOW_SIZE/2;
int qy_start = y - HALF_WIN >= 0 ? y - HALF_WIN : 0;
int qy_end = y + HALF_WIN < rows_ ? y + HALF_WIN : rows_ - 1;
int qx_start = x - HALF_WIN >= 0 ? x - HALF_WIN : 0;
int qx_end = x + HALF_WIN < cols_ ? x + HALF_WIN : cols_ - 1;
float* fp = &(v1_.p[(y*cols_*3)+x*3]);
precompute_weights(v1_, x, y, rows_, cols_, qy_start, qy_end, qx_start, qx_end);
float cost_left = mcost(v1_, v2_, fp, x, y, rows_, cols_, -1, qy_start, qy_end, qx_start, qx_end);
fp = &(v2_.p[(y*cols_*3)+x*3]);
precompute_weights(v2_, x, y, rows_, cols_, qy_start, qy_end, qx_start, qx_end);
float cost_right = mcost(v2_, v1_, fp, x, y, rows_, cols_, +1, qy_start, qy_end, qx_start, qx_end);
return {cost_left, cost_right};
}
float get_W_mcost(void){
return 1.0 * 48. * WINDOW_SIZE * WINDOW_SIZE;
}
float get_Q_mcost(void){
return 1.0 * 29. * WINDOW_SIZE * WINDOW_SIZE;
}
float peakperf_mcost(void){
// The following two measures ensure that all pixels
// of the cost window are evaluated (upper bound)
//
// Set center coordinate of cost window s.t.
// complete cost window is within image
int x = 50;
int y = 50;
// Yields disparity = 0 in any case -> match within image
float fp[] = {0,0,0,0};
int HALF_WIN = WINDOW_SIZE/2;
int qy_start = y - HALF_WIN >= 0 ? y - HALF_WIN : 0;
int qy_end = y + HALF_WIN < rows_ ? y + HALF_WIN : rows_ - 1;
int qx_start = x - HALF_WIN >= 0 ? x - HALF_WIN : 0;
int qx_end = x + HALF_WIN < cols_ ? x + HALF_WIN : cols_ - 1;
return mcost(v2_, v1_, fp, x, y, rows_, cols_, +1, qy_start, qy_end, qx_start, qx_end);
}
// destructor
~Kernel() {
delete[] v1_.i;
delete[] v2_.i;
delete[] v1_.g;
delete[] v2_.g;
delete[] v1_.p;
delete[] v2_.p;
}
private:
KernelView v1_;
KernelView v2_;
};
}//namespace simd_v23
}//namespace pm