forked from jbhuang0604/SelfExSR
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsr_demo.m
88 lines (80 loc) · 3.13 KB
/
sr_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
function imgHiRes = sr_demo(filePath, opt)
% SR_DEMO
%
% Input:
% - filePath: filePath contains
% (1) dataPath: path to the input images
% (2) imgFileName: the file name of the input low-resolution image
% - opt: algorithm parameters, obtained by
% opt = sr_init_opt(SRF);
% Output:
% - imgHiRes: the super-resolved images
%
% Example usage:
% filePath.dataPath = 'data\Urban100\image_SRF_4';
% filePath.imgFileName = 'img_001_SRF_4_LR.png';
%
% imgHiRes = sr_demo(filePath, opt);
% Disclaimer:
%
% It is provided for educational/researrch purpose only.
% If you find the software useful, please consider cite our paper.
%
% Single Image Super-Resolution using Transformed Self-Exemplars
% Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja
% IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
%
% Contact:
% Jia-Bin Huang
% Electrical and Computer Engineering
% University of Illinois, Urbana-Champaign
% www.jiabinhuang.com
% =========================================================================
% Extract planar structures
% =========================================================================
fprintf('- Extract planar structures \n');
tic;
modelPlane = sr_extract_plane(filePath.dataPath, filePath.imgFileName, opt);
tAnalysis = toc;
fprintf('Done in %6.3f seconds.\n\n', tAnalysis);
% =========================================================================
% Construct image pyramid for coarse-to-fine image super-resolution
% =========================================================================
tic;
% Load the input low-resolution image:
img = im2single(imread(fullfile(filePath.dataPath, filePath.imgFileName)));
if(ndims(img)~=3) % support only RGB images
img = cat(3, img, img, img);
end
tImgPyramid = toc;
fprintf('Done in %6.3f seconds.\n\n', tImgPyramid);
% Create image pyramid and multi-level planar structure constraints
fprintf('- Construct plane pyramid: \n');
tic;
[imgPyrH, imgPyrL, scaleImgPyr] = sr_create_img_pyramid(img, opt);
modelPlane = sr_planar_structure_pyramid(scaleImgPyr, modelPlane, opt.topLevel);
tPlanePyramid = toc;
fprintf('Done in %6.3f seconds.\n\n', tPlanePyramid);
% =========================================================================
% Super-resolution by patch-based synthesis
% =========================================================================
fprintf('- Single Image Super-Resolution using Transformed Self-Exemplars \n');
tic;
imgPyr = sr_synthesis(imgPyrH, imgPyrL, scaleImgPyr, modelPlane, filePath, opt);
tSynthesis = toc;
fprintf('Synthesis took %6.3f seconds.\n', tSynthesis);
% Get the level corresponding to the desired high-resolution image
if(mod(opt.SRF,2) == 0 )
lvlInd = opt.origResLvl - log(opt.SRF)/log(2)*opt.nLvlToRedRes;
else
lvlInd = opt.origResLvl - log(opt.SRF)/log(3)*opt.nLvlToRedRes;
end
imgHiRes = imgPyr{uint8(lvlInd)};
% Visualize plane parameters
% if(0)
% imgTformVis = sr_vis_planar_tform(imgPyr{opt.origResLvl-6}, modelPlane{opt.origResLvl-6});
%
% imgVisResName = [filePath.imgFileName(1:end-4), '_vis.png'];
% imwrite(imgTformVis, fullfile('result\vis', imgVisResName));
% end
end