-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
140 lines (101 loc) · 4.69 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
# ------------------------ Some helper functions for this project -------------------------
def time_elapsed(t0,t):
"""
print time elapsed between t0 and t, where t0 and t are time.time() instances
"""
delta_t = t-t0
t_mins = round(delta_t/60, 2)
return t_mins
def human_feature(feature):
"""
Given a feature (string) as presented in the ATLAS Top Tagging dataset,
internally compare it to a feature mapping dictionary and return the
human-readable feature
str --> str
"""
feature_dict = {
'fjet_C2': None,
'fjet_D2': None,
'fjet_ECF1': None,
'fjet_ECF2': None,
'fjet_ECF3': None,
'fjet_L2': None,
'fjet_L3': None,
'fjet_Qw': None,
'fjet_Split12': None,
'fjet_Split23': None,
'fjet_Tau1_wta': None,
'fjet_Tau2_wta': None,
'fjet_Tau3_wta': None,
'fjet_Tau4_wta': None,
'fjet_ThrustMaj': None,
'fjet_eta': "jet pseudo-rapidity",
'fjet_m': "jet mass",
'fjet_phi': "jet azimuthal angle",
'fjet_pt': "jet transverse momentum",
'fjet_clus_pt': "constituent transverse momentum",
'fjet_clus_eta': "constituent pseudo-rapidity",
'fjet_clus_phi': "constituent azimuthal angle",
'fjet_clus_E': "constituent energy",
}
return feature_dict[feature]
def features_by_attribute(attribute):
"""
Given an attribute from 'jet', 'constituents', or 'high_level', return the
corresponding features
"""
jet_keys = ['fjet_pt', 'fjet_eta', 'fjet_phi', 'fjet_m']
const_keys = ['fjet_clus_pt', 'fjet_clus_eta', 'fjet_clus_phi', 'fjet_clus_E']
hl_keys = ['fjet_C2', 'fjet_D2',
'fjet_ECF1', 'fjet_ECF2',
'fjet_ECF3', 'fjet_L2',
'fjet_L3', 'fjet_Qw',
'fjet_Split12', 'fjet_Split23',
'fjet_Tau1_wta', 'fjet_Tau2_wta',
'fjet_Tau3_wta', 'fjet_Tau4_wta', 'fjet_ThrustMaj']
use_keys = jet_keys if attribute == 'jet' else (const_keys if attribute == 'constituents' else (hl_keys if attribute == 'high_level' else None))
return use_keys
def diffuse(data, all_features, noise_std=1, apply_features=None):
"""
Given input data (e.g., output of preprocess.get_data) and keyword arguments,
diffuse high quality input to lower quality by adding Gaussian noise to specified features.
data: numpy array of shape [INPUT_SIZE, NUM_FEATURES, NUM_CONSTITUENTS] or [INPUT_SIZE, NUM_FEATURES]
noise_std: desired noise standard deviation for the diffusion
all_features: list of all features (ordered wrt data) of shape [NUM_FEATURES]
apply_features: list of features to apply diffusion on
"""
# Create a copy of the data to avoid inplace contamination
data_copy = np.copy(data)
# Next, replace zeros (which aren't physically relevant as they just correspond to missing data) with NaN
data_copy = np.where(data_copy == 0, np.nan, data_copy)
use_features = all_features if apply_features is None else apply_features
for f in use_features:
f_idx = np.where(all_features == f)[0][0]
if data_copy.ndim == 3:
data_copy[:, :, f_idx] += np.random.normal(loc=0.0, scale=noise_std, size=data_copy[:, :, f_idx].shape)
elif data_copy.ndim == 2:
data_copy[:, f_idx] += np.random.normal(loc=0.0, scale=noise_std, size=data_copy[:, f_idx].shape)
else:
raise ValueError("diffuse doesn't apply to high-level data. Try jet or constituents.")
# Finally, add the zeros back in to correctly handle missing values
data_copy = np.nan_to_num(data_copy)
return data_copy
def add_constits(data, target_shape):
"""
Given a data of shape [input_size, num_constits, num_features], add some zeros to obtain the desired
[input_size, target_shape, num_features] where num_constits < target_shape
Parameters:
data (numpy.ndarray): Input array of shape [input_size, num_features]. (example 40)
Returns:
numpy.ndarray: Modified array of shape [input_size, num_features, 80]. (example 80)
"""
# Calculate how many zeros to add to each side of the last dimension
current_last_dim = data.shape[1]
pad_width = target_shape - current_last_dim
# Validate that the pad_width is non-negative
if pad_width < 0:
raise ValueError(f"target_shape ({target_shape}) must be greater than the current middle dimension size ({current_last_dim}).")
# Use np.pad to add zeros at the end of the last dimension
padded_data = np.pad(data, pad_width=((0, 0), (0, pad_width), (0, 0)), mode='constant', constant_values=0)
return padded_data