-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRFC.py
150 lines (109 loc) · 6.07 KB
/
RFC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import os
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.metrics import f1_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from scipy.stats import skew
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
def get_data(path):
columns = ['accx', 'accy', 'accz', 'linx', 'liny', 'linz']
idx2filename = {}
whole_data = []
for index, file in enumerate(os.listdir(path)):
data = pd.read_csv(path + str(file), names=columns, delimiter=',')
idx2filename[index] = file
whole_data.append(data.values[1000:4000, :])
return whole_data, idx2filename
def RMS(threedata):
print((threedata[0:1]))
def featuring(datas): # take mean and std of data samples and plus RMS
mean_features = []
std_features = []
skew_features = []
median_features = []
final_acc_matrix = []
final_lin_matrix = []
y_labels = []
for idx, data in enumerate(datas):
one_data_size, num_features = data.shape
num_sample = 30
one_sample_size = int(one_data_size / 30)
for num in range(num_sample):
mean_features.append(np.mean(data[num * one_sample_size:(num + 1) * one_sample_size, :], 0))
std_features.append(np.std(data[num * one_sample_size:(num + 1) * one_sample_size, :], 0))
skew_features.append(skew(data[num * one_sample_size:(num + 1) * one_sample_size, :], axis=0, bias=True))
median_features.append(np.median(data[num * one_sample_size:(num + 1) * one_sample_size, :], axis = 0))
y_labels.append(idx)
square_matrix = np.square(data[num * one_sample_size:(num + 1) * one_sample_size, :])
acc_square_matrix = square_matrix[:, [0, 1, 2]]
lin_square_matrix = square_matrix[:, [0, 1, 2]]
acc_square_matrix = acc_square_matrix.sum(axis = 1)
lin_square_matrix = lin_square_matrix.sum(axis = 1)
sqrt_acc_features = np.sqrt(acc_square_matrix)
sqrt_lin_features = np.sqrt(lin_square_matrix)
final_acc_matrix.append(sqrt_acc_features)
final_lin_matrix.append(sqrt_lin_features)
return mean_features, std_features, skew_features, median_features, final_acc_matrix, final_lin_matrix, y_labels
def train_test_divide(mean_data, std_data, skew_data, median_data, amp_acc, amp_lin, y_data, ratio):
num_data = len(mean_data)
mean_data, std_data, skew_data, median_data, amp_acc, amp_lin, y_data = shuffle(mean_data, std_data, skew_data, median_data, amp_acc, amp_lin, y_data)
train_mean_data = mean_data[:int(ratio * num_data)]
train_std_data = std_data[:int(ratio * num_data)]
train_skew_data = skew_data[:int(ratio * num_data)]
train_median_data = median_data[:int(ratio * num_data)]
train_amp_acc = amp_acc[:int(ratio * num_data)]
train_amp_lin = amp_lin[:int(ratio * num_data)]
train_label = y_data[:int(ratio * num_data)]
test_mean_data = mean_data[int(ratio * num_data):]
test_std_data = std_data[int(ratio * num_data):]
test_skew_data = skew_data[int(ratio * num_data):]
test_median_data = median_data[int(ratio * num_data):]
test_amp_acc = amp_acc[int(ratio * num_data):]
test_amp_lin = amp_lin[int(ratio * num_data):]
test_label = y_data[int(ratio * num_data):]
return train_mean_data, train_std_data, train_skew_data, train_median_data, train_amp_acc, train_amp_lin, train_label, test_mean_data, test_std_data, test_skew_data, test_median_data, test_amp_acc, test_amp_lin, test_label
def classify(mean_features, std_features, skew_features, median_features, final_acc_matrix, final_lin_matrix, y_labels):
train_mean_data, train_std_data, train_skew_data, train_median_data, train_amp_acc, train_amp_lin, train_label, test_mean_data, test_std_data, test_skew_data, test_median_data, test_amp_acc, test_amp_lin, test_label = train_test_divide(mean_features, std_features, skew_features, median_features, final_acc_matrix, final_lin_matrix, y_labels, 0.6)
train_mean_data = np.array(train_mean_data)
train_std_data = np.array(train_std_data)
train_skew_data = np.array(train_skew_data)
train_median_data = np.array(train_median_data)
train_amp_acc = np.array(train_amp_acc)
train_amp_lin = np.array(train_amp_lin)
test_mean_data = np.array(test_mean_data)
test_std_data = np.array(test_std_data)
test_skew_data = np.array(test_skew_data)
test_median_data = np.array(test_median_data)
test_amp_acc = np.array(test_amp_acc)
test_amp_lin = np.array(test_amp_lin)
train_data = np.concatenate((train_mean_data, train_std_data, train_skew_data, train_median_data), axis=1)#train_amp_acc, , train_amp_lin , , train_skew_data, train_median_data
test_data = np.concatenate((test_mean_data, test_std_data, test_skew_data, test_median_data), axis=1)#test_amp_acc , test_amp_lin , test_median_data , test_skew_data, test_median_data
rfc = RandomForestClassifier(n_estimators=1000)
rfc.fit(train_data, train_label)
train_score = rfc.score(train_data, train_label)
test_score = rfc.score(test_data, test_label)
print("rfc train score: ", train_score)
print("rfc test score: ", test_score)
p = rfc.predict(test_data)
f1_score_result = f1_score(test_label, p, average=None).mean()
print("dt F1 score: ", f1_score_result)
return test_score, f1_score_result
path = "data/"
whole_data, idx2filename = get_data(path)
mean_features, std_features, skew_features, median_features, final_acc_matrix, final_lin_matrix, y_labels = featuring(whole_data)
num_iteration = 20
test_scores = []
f1_scores = []
for _ in range(num_iteration):
test_score, f1_score_result = classify(mean_features, std_features, skew_features, median_features, final_acc_matrix, final_lin_matrix, y_labels)
test_scores.append(test_score)
f1_scores.append(f1_score_result)
avg_test_score = np.mean(test_scores)
avg_f1_score = np.mean(f1_score_result)
print('Test: ', avg_test_score)
print('Avg: ', avg_f1_score)