-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
146 lines (126 loc) · 5.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import logging
import os
import random
import numpy as np
import sys
import time
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn.modules.loss import CrossEntropyLoss
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from torchvision import transforms
from tensorboardX import SummaryWriter
from networks.TransUNet_model import TransUNet
from datasets.dataset_us_xray import Ultrasound_dataset, LungXray_dataset, RandomGenerator
from utils import DiceLoss
cudnn.benchmark = False
cudnn.deterministic = True
torch.manual_seed(2021)
torch.cuda.manual_seed(2021)
np.random.seed(2021)
random.seed(2021)
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str, help='root dir for data')
parser.add_argument('--dataset', type=str,
default='Ultrasound', help='name of dataset for training')
parser.add_argument('--list_dir', type=str, help='path to dir where train-val split is stored')
parser.add_argument('--num_classes', type=int,
default=2, help='number of classes including background')
parser.add_argument('--models_save_dir', type=str, required=True,
help='dir path to save models')
parser.add_argument('--max_epochs', type=int,
default=150, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int,
default=24, help='batch_size per gpu')
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu')
parser.add_argument('--base_lr', type=float, default=0.01,
help='segmentation network learning rate')
parser.add_argument('--img_size', type=int,
default=224, help='input patch size of network input')
args = parser.parse_args()
def training_loop(args, model, snapshot_path, dataset_name):
logging.basicConfig(filename=snapshot_path + "/log.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
base_lr = args.base_lr
num_classes = args.num_classes
batch_size = args.batch_size * args.n_gpu
Dataset = {'Ultrasound': Ultrasound_dataset, 'CovidLungSeg': LungXray_dataset}
db_train = Dataset[dataset_name](base_dir=args.root_path, list_dir=args.list_dir, split="train",
transform=transforms.Compose(
[RandomGenerator(output_size=[args.img_size, args.img_size])]))
print("The length of train set is: {}".format(len(db_train)))
def worker_init_fn(worker_id):
random.seed(2021 + worker_id)
trainloader = DataLoader(db_train, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True,
worker_init_fn=worker_init_fn)
if args.n_gpu > 1:
model = nn.DataParallel(model)
model.train()
ce_loss = CrossEntropyLoss()
dice_loss = DiceLoss(num_classes)
optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001)
writer = SummaryWriter(snapshot_path + '/log')
iter_num = 0
max_epoch = args.max_epochs
max_iterations = args.max_epochs * len(trainloader) # max_epoch = max_iterations // len(trainloader) + 1
logging.info("{} iterations per epoch. {} max iterations ".format(len(trainloader), max_iterations))
best_performance = 0.0
iterator = tqdm(range(max_epoch), ncols=70)
for epoch_num in iterator:
for i_batch, sampled_batch in enumerate(trainloader):
image_batch, label_batch = sampled_batch['image'], sampled_batch['label']
image_batch, label_batch = image_batch.cuda(), label_batch.cuda()
outputs = model(image_batch)
loss_ce = ce_loss(outputs, label_batch[:].long())
loss_dice = dice_loss(outputs, label_batch, softmax=True)
loss = 0.5 * loss_ce + 0.5 * loss_dice
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
iter_num = iter_num + 1
writer.add_scalar('info/lr', lr_, iter_num)
writer.add_scalar('info/total_loss', loss, iter_num)
writer.add_scalar('info/loss_ce', loss_ce, iter_num)
logging.info('iteration %d : loss : %f, loss_ce: %f' % (iter_num, loss.item(), loss_ce.item()))
if epoch_num % 20 == 0:
save_mode_path = os.path.join(snapshot_path, 'epoch_' + str(epoch_num) + '.pth')
torch.save(model.state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))
if epoch_num >= max_epoch - 1:
save_mode_path = os.path.join(snapshot_path, 'epoch_' + str(epoch_num) + '.pth')
torch.save(model.state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))
iterator.close()
break
writer.close()
return "Training Finished!"
if __name__ == "__main__":
dataset_name = args.dataset
dataset_config = {
'Ultrasound': {
'root_path': '/ssd_scratch/cvit/rupraze/data/ultrasound',
'list_dir': './lists/lists_Ultrasound',
'num_classes': 2,
},
'LungSeg': {
'root_path': '/ssd_scratch/cvit/rupraze/data/lungs_seg_dataset',
'list_dir': './lists/lists_CovidLungSeg',
'num_classes': 2,
},
}
args.num_classes = dataset_config[dataset_name]['num_classes']
args.root_path = dataset_config[dataset_name]['root_path']
args.list_dir = dataset_config[dataset_name]['list_dir']
if not os.path.exists(args.models_save_dir):
os.makedirs(args.models_save_dir)
net = TransUNet(num_classes=args.num_classes).cuda()
training_loop(args, net, args.models_save_dir, dataset_name)