diff --git a/mambular/models/fttransformer.py b/mambular/models/fttransformer.py index 71d3653..efd346e 100644 --- a/mambular/models/fttransformer.py +++ b/mambular/models/fttransformer.py @@ -64,6 +64,8 @@ class FTTransformerRegressor(SklearnBaseRegressor): Epsilon value for layer normalization. transformer_dim_feedforward : int, default=512 Dimensionality of the feed-forward layers in the transformer. + cat_encoding : str, default="int" + whether to use integer encoding or one-hot encoding for cat features. n_bins : int, default=50 The number of bins to use for numerical feature binning. This parameter is relevant only if `numerical_preprocessing` is set to 'binning' or 'one_hot'. @@ -171,6 +173,8 @@ class FTTransformerClassifier(SklearnBaseClassifier): Epsilon value for layer normalization. transformer_dim_feedforward : int, default=512 Dimensionality of the feed-forward layers in the transformer. + cat_encoding : str, default="int" + whether to use integer encoding or one-hot encoding for cat features. n_bins : int, default=50 The number of bins to use for numerical feature binning. This parameter is relevant only if `numerical_preprocessing` is set to 'binning' or 'one_hot'. @@ -278,6 +282,8 @@ class FTTransformerLSS(SklearnBaseLSS): Epsilon value for layer normalization. transformer_dim_feedforward : int, default=512 Dimensionality of the feed-forward layers in the transformer. + cat_encoding : str, default="int" + whether to use integer encoding or one-hot encoding for cat features. n_bins : int, default=50 The number of bins to use for numerical feature binning. This parameter is relevant only if `numerical_preprocessing` is set to 'binning' or 'one_hot'. diff --git a/mambular/models/mambular.py b/mambular/models/mambular.py index 6fc147c..09a518a 100644 --- a/mambular/models/mambular.py +++ b/mambular/models/mambular.py @@ -79,6 +79,14 @@ class MambularRegressor(SklearnBaseRegressor): Whether to append a cls to the end of each 'sequence'. shuffle_embeddings : bool, default=False. Whether to shuffle the embeddings before being passed to the Mamba layers. + layer_norm_eps : float, default=1e-05 + Epsilon value for layer normalization. + AD_weight_decay : bool, default=False + whether weight decay is also applied to A-D matrices. + BC_layer_norm: bool, default=True + whether to apply layer normalization to B-C matrices. + cat_encoding : str, default="int" + whether to use integer encoding or one-hot encoding for cat features. n_bins : int, default=50 The number of bins to use for numerical feature binning. This parameter is relevant only if `numerical_preprocessing` is set to 'binning' or 'one_hot'. @@ -198,6 +206,14 @@ class MambularClassifier(SklearnBaseClassifier): Whether to use learnable feature interactions before passing through mamba blocks. shuffle_embeddings : bool, default=False. Whether to shuffle the embeddings before being passed to the Mamba layers. + layer_norm_eps : float, default=1e-05 + Epsilon value for layer normalization. + AD_weight_decay : bool, default=False + whether weight decay is also applied to A-D matrices. + BC_layer_norm: bool, default=True + whether to apply layer normalization to B-C matrices. + cat_encoding : str, default="int" + whether to use integer encoding or one-hot encoding for cat features. n_bins : int, default=50 The number of bins to use for numerical feature binning. This parameter is relevant only if `numerical_preprocessing` is set to 'binning' or 'one_hot'. @@ -320,6 +336,14 @@ class MambularLSS(SklearnBaseLSS): only if `numerical_preprocessing` is set to 'binning' or 'one_hot'. shuffle_embeddings : bool, default=False. Whether to shuffle the embeddings before being passed to the Mamba layers. + layer_norm_eps : float, default=1e-05 + Epsilon value for layer normalization. + AD_weight_decay : bool, default=False + whether weight decay is also applied to A-D matrices. + BC_layer_norm: bool, default=True + whether to apply layer normalization to B-C matrices. + cat_encoding : str, default="int" + whether to use integer encoding or one-hot encoding for cat features. numerical_preprocessing : str, default="ple" The preprocessing strategy for numerical features. Valid options are 'binning', 'one_hot', 'standardization', and 'normalization'. diff --git a/mambular/models/tabtransformer.py b/mambular/models/tabtransformer.py index 5cd3787..901369e 100644 --- a/mambular/models/tabtransformer.py +++ b/mambular/models/tabtransformer.py @@ -63,6 +63,8 @@ class TabTransformerRegressor(SklearnBaseRegressor): Epsilon value for layer normalization. transformer_dim_feedforward : int, default=512 Dimensionality of the feed-forward layers in the transformer. + cat_encoding : str, default="int" + whether to use integer encoding or one-hot encoding for cat features. n_bins : int, default=50 The number of bins to use for numerical feature binning. This parameter is relevant only if `numerical_preprocessing` is set to 'binning' or 'one_hot'. @@ -170,6 +172,8 @@ class TabTransformerClassifier(SklearnBaseClassifier): Epsilon value for layer normalization. transformer_dim_feedforward : int, default=512 Dimensionality of the feed-forward layers in the transformer. + cat_encoding : str, default="int" + whether to use integer encoding or one-hot encoding for cat features. n_bins : int, default=50 The number of bins to use for numerical feature binning. This parameter is relevant only if `numerical_preprocessing` is set to 'binning' or 'one_hot'. @@ -277,6 +281,8 @@ class TabTransformerLSS(SklearnBaseLSS): Epsilon value for layer normalization. transformer_dim_feedforward : int, default=512 Dimensionality of the feed-forward layers in the transformer. + cat_encoding : str, default="int" + whether to use integer encoding or one-hot encoding for cat features. n_bins : int, default=50 The number of bins to use for numerical feature binning. This parameter is relevant only if `numerical_preprocessing` is set to 'binning' or 'one_hot'.