Parameter-free Reduction of the Estimation Bias in Deep Reinforcement Learning for Deterministic Policy Gradients
PyTorch implementation of the Stochastic Weighted Twin Delayed Deep Deterministic Policy Gradient algorithm (SWTD3). Note that the implementation of the TD3 algorithm is heavily based on the author's Pytorch implementation of the TD3 algorithm. If you use our code or data, please cite the paper.
The algorithm is tested on MuJoCo and Box2D continuous control tasks.
Following computing infrastructure is used to produce the results.
Hardware/Software | Model/Version |
---|---|
Operating System | Ubuntu 18.04.5 LTS |
CPU | AMD Ryzen 7 3700X 8-Core Processor |
GPU | Nvidia GeForce RTX 2070 SUPER |
CUDA | 11.1 |
Python | 3.8.5 |
PyTorch | 1.8.1 |
OpenAI Gym | 0.17.3 |
MuJoCo | 1.50 |
Box2D | 2.3.10 |
NumPy | 1.19.4 |
usage: main.py [-h] [--policy POLICY] [--env ENV] [--seed SEED] [--gpu GPU]
[--start_time_steps N] [--buffer_size BUFFER_SIZE]
[--eval_freq N] [--max_time_steps N] [--exploration_noise G]
[--batch_size N] [--discount G] [--tau G] [--policy_noise G]
[--noise_clip G] [--policy_freq N] [--save_model]
[--load_model LOAD_MODEL]
optional arguments:
-h, --help show this help message and exit
--policy POLICY Algorithm (default: SWTD3)
--env ENV OpenAI Gym environment name
--seed SEED Seed number for PyTorch, NumPy and OpenAI Gym (default: 0)
--gpu GPU GPU ordinal for multi-GPU computers (default: 0)
--start_time_steps N Number of exploration time steps sampling random actions (default: 1000)
--buffer_size BUFFER_SIZE Size of the experience replay buffer (default: 1000000)
--eval_freq N Evaluation period in number of time steps (default: 1000)
--max_time_steps N Maximum number of steps (default: 1000000)
--exploration_noise G Std of Gaussian exploration noise
--batch_size N Batch size (default: 256)
--discount G Discount factor for reward (default: 0.99)
--tau G Learning rate in soft/hard updates of the target networks (default: 0.005)
--policy_noise G Noise added to target policy during critic update
--noise_clip G Range to clip target policy noise
--policy_freq N Frequency of delayed policy updates
--save_model Save model and optimizer parameters
--load_model LOAD_MODEL Model load file name; if empty, does not load
@misc{https://doi.org/10.48550/arxiv.2109.11788,
doi = {10.48550/ARXIV.2109.11788},
url = {https://arxiv.org/abs/2109.11788},
author = {Saglam, Baturay and Mutlu, Furkan Burak and Cicek, Dogan Can and Kozat, Suleyman Serdar},
keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Machine Learning (stat.ML), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Parameter-free Reduction of the Estimation Bias in Deep Reinforcement Learning for Deterministic Policy Gradients},
publisher = {arXiv},
year = {2021},
copyright = {arXiv.org perpetual, non-exclusive license}
}