-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtry11.m
290 lines (210 loc) · 8.08 KB
/
try11.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
% Copyright (C) 12/12/2018 Regents of the University of Michigan
% Aerospace Engineering Department
% Computational Aeroscience Lab, written by Behdad Davoudi
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <https://www.gnu.org/licenses/>.
function varargout=try11(rpm,varargin)
%#codegen
global geometry2
if nargin==3
V_rel_B=varargin{1};
T=varargin{2};
end
% prcoedures:
% the geometry is a cell array, should already be created in the workspace
% and defined as global variable
% find the uniform lamb0
% used linear inflow model for forward model
% calculate thrust, roll and moment coefficiencts
% using blade element theory
% inputs:
%ct=0.005;
%mu=0.15;
%lambc=0.05;
%alpha=10*pi/180;
%om=200;;nb=2;
%outputs:
%y the difference between ct by momentum and blade element theories
%ct The thrust coefficient
%cl The rolling coefficient
%cm The pitching coefficient
%% rotor characteristics
% geometry={R,nb,A,rho,nr,npsi,th,c,cla,r,psi};
R=geometry2(1,1);
nb=geometry2(2,1);
A=geometry2(3,1);
rho=geometry2(4,1);
nr=geometry2(5,1);
npsi=geometry2(6,1);
M=geometry2(7,1);
alp0=geometry2(8,1);
aLeq0=geometry2(9,1);
th=geometry2(10,1:nr);
c=geometry2(11,1:nr);
cla=geometry2(12,1:nr);
r=geometry2(13,1:nr);
psi=geometry2(14,:);
sig=nb*mean(c)/(pi*R); % blade solidity
%%
Vx=V_rel_B(1);Vy=V_rel_B(2);Vz=V_rel_B(3);
Vinf=[Vx,Vy,Vz]; % relative incoming velocity
om=rpm*2*pi/60; % rad per second
vt=om*R ; % tip velocity
mu= sqrt(Vx^2+Vy^2) / vt ; % advance ratio
lamb_tot = Vinf(3)/vt ; % total external inflow ratio (effect lamb_c ans mu * tan alpha)
% the pitch angle of the quad-copter is already embded becuse the Vinf is
% in body frame!
alpha = atan(Vinf(3)/norm(Vinf,2)); % copter angle of attack
% thrust coeffcient
ct=T/(rho*pi*R^2*vt^2);
% climb ratio, prependicular to free stream
lambc=lamb_tot/cos(alpha);
%% finding lamb0
% lambda= mu*tan(alpha) + ct/(2*sqrt(mu^2+lambda(n)^2)) + lamc * cos(alpha)
er1=1;
% inflow for hover
lah = sqrt(0.5*ct);
% using exact solution for a more simplified case to behoove the initial guess
%lamb = lah * ((0.25*(mu/lah)^4+1)^0.5-0.5*(mu/lah)^2)^0.5;
lamb=lah;
% lamb0 = mu * tan (alpha) + lambc * cos(alpha) + 0.5 * ct * (mu^2 + lamb0 ^2) ^ (-0.5) ;
% it is noted that lamb_tot = mu * tan (alpha) + lambc * cos(alpha)
% induced inflow ratio from momemntum theory
while er1>0.00001
% f = lamb0 - mu * tan (alpha) - lambc * cos(alpha) - 0.5 * ct * (mu^2 + lamb0 ^2) ^ (-0.5) ;
f= lamb - lamb_tot - 0.5 * ct * (mu^2 + lamb ^2) ^ (-0.5) ;
fp = 1 + 0.5 * ct * (mu^2 + lamb ^2) ^ (-1.5) * lamb;
lambnew = lamb - f/fp;
er1 = abs((lambnew - lamb)/lamb) ;
lamb = lambnew ;
end
%lambda_one=lamb0;
%dct=2*lamb0^2-ct;
%% page 158 - 160
% muz is the advance ratio prependicular to the rotor (lambda_c)
% mux is the advance ratio parallel to the rotor
% muz = lamb_c * cos(alpha) ;
% mux = mu;
mux = mu ;
muz = lamb_tot;
% wake skew angle
%x = atan (mux/(muz + lambi))=atan (mux/(lamb));
%x = atan (mux/(lambi+muz));
x = atan (mux/(lamb));
% different linear inflow models
% Drees:
% kx = 4/3 * (1 - cos(x) - 1.8 * mu^2) / sin(x) ;
%
% if x==0
% kx=0;
% end
%
% ky = -2*mu;
% Pitt and Peters:
kx = (15*pi/23)*tan(x/2);
ky = 0;
%% fixing psi given a Vy velcoity, psi is defined when x is alinged with free stream
psi_new=psi-atan(-Vy/Vx);
% constructing inflow ratio based on a linear model
% lambda is a matrix, rows r, and columns azimuth, (nr * npsi)
lam = lamb * (1 + kx * r' * cos(psi_new) + ky * r' * sin(psi_new));
%% intergration to find roll and pitch for a rotor
beta=0 ;
beta_dot=0 ;
r2=repmat(r',1,npsi); % nr*npsi
psi2=repmat(psi_new,nr,1); % nr*npsi
% the incoming velocity seen by the blade
% for a quad-copter (no flpapping)
% up = lamb0 + lambc + mu * beta * cos (psi2) + r2 * beta_dot / om(1) ;
%%%%%%%% make sure to change om to om (t)
up = lam + mu * beta * cos (psi2) + r2 * beta_dot / om(1) ;
ut = r2 + mu*sin(psi2) ;
%ur = mu *cos(psi2) ;
u = (ut.^2 +up.^2) .^0.5 ;
% matrix form of the variables
%phi=atan((lam + lamb_tot)./r') ; % nr*npsi
%phi=atan(bsxfun(@rdivide, lam, r'));
phi=atan(up./ut);
th2=repmat(th',1,npsi); % nr*npsi
cla2=repmat(cla',1,npsi); % nr*npsi
c2=repmat(c',1,npsi); % nr*npsi
%diff2=diff(r2);
%dr2=[diff2(1,:);diff(r2)];
%da2=2*pi.*r2.*dr2;
% cl=cl(r,psi)
cl1 = cla2 .* (th2 - phi);
% based on Beard-McLain book page 47 to model stall condition
alp=(th2 - phi)-aLeq0;
sigma=(1+exp(-M*(alp-alp0)) + exp(M*(alp+alp0)))./...
((1+exp(-M*(alp-alp0))).*(1+exp(M*(alp+alp0))));
cl = (1-sigma).*cl1 + sigma .* (2* sign(alp) .* sin(alp).^2 .* cos(alp));
aoaeff=(th2 - phi)*180/pi;
%plot(cl);hold on;
% lift generated by every annulus
% intergral int_0^{2pi} cl * 1/2 * rho * U^2 * c2 / (2pi)
% l = nb * trapz(psi, cl * 0.5 .* rho .* (vt*u).^2 .*c2 , 2) / (2*pi);
l = nb * trapz(psi_new, cl * 0.5 .* rho .* (vt*u).^2 .*c2.*cos(atan(up./ut)) , 2) / (2*pi);
%ct = l ./ (rho * 2 * pi * r' .* dr2(:,1) .* (r'*R*om).^2 * R^2) ;
%cT=trapz(r*R,ct)
% note that vt wil be cancel out in ct calculations
ct_two=trapz(r*R,l)/(rho*pi*R^2*vt^2);
% the error parameter defined between momentum and blade element theories
er_ct=abs(ct_two-ct)/ct;
% x point to the nose of the vehicle, y to the right wing (pilot's right),
% z pointing downward - right wing dowm, nose up, right wing back are
% positive roll, pitch, yaw moments, psi = 0, starts farther from the
% inflow, x<0
x=-r2.*cos(psi2)*R;
y=r2.*sin(psi2)*R;
%note, I already cancel out Vt
cmroll = trapz(r*R,...
nb/(2*pi)*trapz(psi_new,-y.*cl*0.5*rho.*u.^2.*c2.*cos(atan(up./ut)),2))/(rho*pi*R^3);
cmpitch = trapz(r*R,...
nb/(2*pi)*trapz(psi_new,x.*cl*0.5*rho.*u.^2.*c2.*cos(atan(up./ut)),2))/(rho*pi*R^3);
%cl(10,:)*0.5*rho.*u(6,:).^2.*c2(10,:)
%plot(psi,x(10,:).*cl(10,:)*0.5*rho.*u(10,:).^2.*c2(10,:))
% blade profile drag
% Cd0=0.0081-0.0216*aoa+0.4*aoa^2; from helicopter literature, note aoa is the angle of attack - page 14, chapter 2 of Friedmann notes
Cd0=0.008;
% f is the equivalent flat plate area that copter frame occupies in space
% -- note that a quarter of the area should be used since this is model for
% for a helicopter, f/A is between 0.004 to 0.025
f=0.005*A * 0.25;
cmyaw=sig * Cd0 * 0.125 * (1 + 4.6* mu^2) + ...
1.15 * 0.5 * ct_two^2 / sqrt(mu^2+lamb^2) + ...
f * mu^3 /(2*pi*R^2) +...
ct_two*lambc ;
% cmyaw=sig * Cd0 * 0.125 * (1 + 4.6* mu^2) + ...
% 1.15 * 0.5 * ct_two^2 / sqrt(mu^2+lambi^2) + ...
% f * mu^3 /(2*pi*R^2) +...
% ct_two*lambc ;
Re=u.*c2/(1.534e-5)*vt;
% cmroll= (trapz(psi_new(1:end/2),r2(:,[1:end/2]).*cl(:,[1:end/2])*0.5*rho.*u(:,[1:end/2]).^2.*c2(:,[1:end/2]),2) -...
% trapz(psi_new(end/2+1:end),r2(:,[end/2+1:end]).*cl(:,[end/2+1:end])*0.5*rho.*u(:,[end/2+1:end]).^2.*c2(:,[end/2+1:end]),2)) / (rho*pi*R^3*vt*2);
% cmpitch=0;
%
% mroll= trapz(r,trapz(psi_new(1:end/2),r2(:,[1:end/2]).*cl(:,[1:end/2]).*u(:,[1:end/2]).^2,2) -...
% trapz(psi_new(end/2+1:end),r2(:,[end/2+1:end]).*cl(:,[end/2+1:end]).*u(:,[1:end/2]).^2,2));
varargout{1}=er_ct;
if nargout>1
varargout{2}=cmroll*(rho*pi*R^3*vt^2);
varargout{3}=cmpitch*(rho*pi*R^3*vt^2);
varargout{4}=cmyaw*(rho*pi*R^3*vt^2);
varargout{5}=ct_two*(rho*pi*R^2*vt^2);
varargout{6}=Re;
varargout{7}=aoaeff;
varargout{8}=cl;
varargout{9}=ct_two;
varargout{10}=cmroll;
varargout{11}=cmpitch;
end