Skip to content

benihime91/retinanet_pet_detector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Open in Streamlit

Pet Face Detector πŸ‘ 🐢 🐱

Using a RetinaNet to detect faces of common breeds of Pets.

Go to this link to preview the web app !

The model not only detects faces of the pets but also classifies the face breed of the animal.

The model has been trained on the these following breeds :

This project is built on top of :

Dataset used:

For training the models The Oxford-IIIT Pet Dataset has been used which can be found here. Two pretrained models for detections are availabel : (RetinaNet with resnet50 backbone) and (RetinaNet with resnet34 backbone). These pretraned-models can be selected via the .ymal files present in the config/ dir.

TODO:

Tutorials

Usage:

  • Install python3
  • Install dependencies
    $ git clone --recurse-submodules -j8 https://github.com/benihime91/retinanet_pet_detector.git
    $ cd retinanet_pet_detector
    $ pip install -r requirements.txt
  • Run app
    $ streamlit run app.py

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.6. To install run:

$ pip install -r requirements.txt

Inference with Pre-Trained weights:

$ python inference.py \
      --config "config/resnet34.yaml"\
      --image "/content/oxford-iiit-pet/images/german_shorthaired_128.jpg" \
      --save_dir "/content/" \
      --fname "res_1.png" \

or

$ python inference.py \
      --config "config/resnet50.yaml"\
      --image "/content/oxford-iiit-pet/images/german_shorthaired_128.jpg" \
      --save_dir "/content/" \
      --fname "res_1.png" \

Flags:

 $ python inference.py --help
    usage: inference.py [-h] [--config CONFIG] --image IMAGE
                    [--score_thres SCORE_THRES] [--iou_thres IOU_THRES]
                    [--md MD] [--save SAVE] [--show SHOW]
                    [--save_dir SAVE_DIR] [--fname FNAME]

    optional arguments:
      -h, --help            show this help message and exit
      --config CONFIG       path to the config file
      --image IMAGE         path to the input image
      --score_thres SCORE_THRES
                            score_threshold to threshold detections
      --iou_thres IOU_THRES
                            iou_threshold for bounding boxes
      --md MD               max detections in the image
      --save SAVE           wether to save the ouput predictions
      --show SHOW           wether to display the output predicitons
      --save_dir SAVE_DIR   directory where to save the output predictions
      --fname FNAME         name of the output prediction file

Training Procedure:

  • Clone the Repo:

    $ git clone --recurse-submodules -j8 https://github.com/benihime91/retinanet_pet_detector.git
    $ cd retinanet_pet_detector
  • Ensure all requirements are installed. To train on GPU need to install PyTroch GPU build. Download it from here. Then commment the first 2 lines from requirements.txt. After that

    $ pip install -r requirements.txt
  • Download the dataset from here.

  • After downloading the dataset . Run the references/data_utils.py to convert the xml annotations into csv file and also create train, validation and test splits.

    $ python prep_data.py --help
      usage: prep_data.py [-h] [--action {create,split}] [--img_dir IMG_DIR]
                         [--annot_dir ANNOT_DIR] [--labels LABELS] [--csv CSV]
                         [--valid_size VALID_SIZE] [--test_size TEST_SIZE]
                         [--output_dir OUTPUT_DIR] [--seed SEED]
    
      optional arguments:
        -h, --help            show this help message and exit
        --action {create,split}
        --img_dir IMG_DIR     path to the image directory
        --annot_dir ANNOT_DIR
                              path to the annotation directory
        --labels LABELS       path to the label dictionary
        --csv CSV             path to the csv file
        --valid_size VALID_SIZE
                              size of the validation set relative to the train set
        --test_size TEST_SIZE
                              size of the test set relative to the validation set
        --output_dir OUTPUT_DIR
                              path to the output csv file
        --seed SEED           random seed

    This commmand converts the xml to csv files. Change the --img_dir to the path where the dataset images are stored, --annot_dir to the path where the xml annotation are stored & --labels to where the label.names file is stored. label.names is stored in data/labels.names. The csv file will be saved in --output_dir as data-full.csv.

    $ python prep_data.py.py \
        --action create \
        --img_dir "/content/oxford-iiit-pet/images" \
        --annot_dir "/content/oxford-iiit-pet/annotations/xmls" \
        --labels "/content/retinanet_pet_detector/data/labels.names" \
        --output_dir "/content/retinanet_pet_detector/data/"

    Run this command to convert training, valiation and test splits.
    The datasets will be saved in --output_dir as train.csv,valid.csv and test.csv.
    Set the --csv argument to the path to data-full.csv generated above.
    You can also set a seed by passing in the --seed argument to insure that results reproducibility.

    $ python prep_data.py.py \
        --action split \
        --csv "/content/retinanet_pet_detector/data/data-full.csv"\
        --valid_size 0.3 \
        --test_size 0.5 \
        --output_dir "/content/retinanet_pet_detector/data/"
        --seed 123
  • Training is controlled by the main.yaml file. Before training ensures that the paths in main.yaml : ( hparams.train_csv,hparams.valid_csv,hparams.valid_csv ) are the correct paths to the files generated above.
    If not training on GPU change these arguments:

    • trainer.gpus = 0
    • trainer.precision = 32

    In the same the other flags in main.yaml can be modified.

  • To train run this command. The --config argument points to the path to where the main.yaml file is saved.

    $ python train.py \
       --config "/content/retinanet_pet_detector/config/main.yaml" \
       --verbose 0 \

    Model weights are automatically saved as state_dicts() in the filepath specifed in trainer.model_checkpoint.params.filepath in main.yaml as weights.pth

  • For inference modify the config/34.yaml or config/resnet50.yaml file . Set the url to be the path where the weights are saved. Example: checkpoints/weights.pth.

    • --config : corresponds to the path where the config/resnet34.yaml or config/resnet50.yaml file is saved.
    • --image : corresponds to the path of the image.
    • Results are saved as {save_dir}/{fname}.
    $ python inference.py \
        --config "/content/retinanet_pet_detector/config/resnet50.yaml"\
        --image "/content/oxford-iiit-pet/images/german_shorthaired_128.jpg"\
        --score_thres 0.7 \
        --iou_thres 0.4 \
        --save_dir "/content/" \
        --fname "res_1.png" \

    or

    $ python inference.py \
          --config "/content/retinanet_pet_detector/config/resnet34.yaml" \
          --image "/content/oxford-iiit-pet/images/german_shorthaired_128.jpg" \
          --save_dir "/content/" \
          --fname "res_1.png" \
  • To view tensorboard logs:

    $ tensorboard --logdir "logs/"

Results:

  • Results for RetinaNet model with resnet34 backbone:

    [09/19 13:37:58 references.lightning]: Evaluation results for bbox: 
    IoU metric: bbox
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.576
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 1.000
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.608
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.500
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.576
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.544
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.624
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.624
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.500
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.628
  • Results for RetinaNet model with resnet50 backbone:

    [09/20 12:39:13 references.lightning]: Evaluation results for bbox: 
    IoU metric: bbox
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.600
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.979
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.604
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.600
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.606
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.619
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.619
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.619