forked from starcroce/nlp_iob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
file_process_draft.py
300 lines (246 loc) · 8.1 KB
/
file_process_draft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import re
filein = open('modified.train.txt', 'r')
B_list = []
I_list = []
O_list = []
word_list = []
tag_list = []
for line in filein:
if line != '\n':
line_list = line.split('\t')
word_list.append(line_list[0])
tag_list.append(line_list[1])
if line_list[1] == 'B\n':
B_list.append(line_list[0])
elif line_list[1] == 'I\n':
I_list.append(line_list[0])
else:
O_list.append(line_list[0])
B_set = set(B_list)
I_set = set(I_list)
O_set = set(O_list)
word_set = set(word_list)
unique_word_list = list(word_set)
# 16637, 6372 / 2987 with UNKs
print len(B_list), len(B_set)
# 24435, 3286 / 2403 with UNKs
print len(I_list), len(I_set)
# 345128, 25095 / 12181 with UNKs
print len(O_list), len(O_set)
# 386200
print len(word_list)
print B_set
print I_set
# 1247, 1218, 1564
print len(B_set & I_set)
print len(B_set & O_set)
print len(I_set & O_set)
# 31328
print len(unique_word_list)
B_tup = tuple(B_list)
I_tup = tuple(I_list)
O_tup = tuple(O_list)
B_dict = {}
I_dict = {}
O_dict = {}
for word in unique_word_list:
B_dict[word] = 0
I_dict[word] = 0
O_dict[word] = 0
for word in B_tup:
B_dict[word] += 1
for word in I_tup:
I_dict[word] += 1
for word in O_tup:
O_dict[word] += 1
for word in unique_word_list:
B_dict[word] = B_dict[word] / 16637.0
I_dict[word] = I_dict[word] / 24435.0
O_dict[word] = O_dict[word] / 345128.0
tag_word_prob_dict = {}
tag_word_prob_dict['B\n'] = B_dict
tag_word_prob_dict['I\n'] = I_dict
tag_word_prob_dict['O\n'] = O_dict
once_count_B = 0
for word in tag_word_prob_dict['B\n'].keys():
if tag_word_prob_dict['B\n'][word] == 1 / 16637.0:
once_count_B += 1
once_count_I = 0
for word in tag_word_prob_dict['I\n'].keys():
if tag_word_prob_dict['I\n'][word] == 1 / 24435.0:
once_count_I += 1
once_count_O = 0
for word in tag_word_prob_dict['O\n'].keys():
if tag_word_prob_dict['O\n'][word] == 1 / 345128.0:
once_count_O += 1
# 4186, 2016, 13368
print once_count_B, once_count_I, once_count_O
print tag_word_prob_dict['B\n']['UNKOWN_mix']
# # process UNKOWN words
# pattern_num = re.compile(r'.*\d+.*')
# pattern_mix = re.compile(r'(?:^[a-z]+[A-Z]+[a-zA-Z]*|^[A-Z]+[a-z]+[a-zA-Z]*)')
# UNKOWN_long_B = 0
# UNKOWN_num_B = 0
# UNKOWN_allUpper_B = 0
# UNKOWN_mix_B = 0
# for word in tag_word_prob_dict['B\n'].keys():
# if tag_word_prob_dict['B\n'][word] == 1 / 16637.0:
# if len(word) >= 8:
# UNKOWN_long_B += 1
# elif pattern_num.match(word) != None:
# UNKOWN_num_B += 1
# elif word.isupper():
# UNKOWN_allUpper_B += 1
# elif pattern_mix.match(word) != None:
# UNKOWN_mix_B += 1
# UNKOWN_long_I = 0
# UNKOWN_num_I = 0
# UNKOWN_allUpper_I = 0
# UNKOWN_mix_I = 0
# for word in tag_word_prob_dict['I\n'].keys():
# if tag_word_prob_dict['I\n'][word] == 1 / 24435.0:
# if len(word) >= 8:
# UNKOWN_long_I += 1
# elif pattern_num.match(word) != None:
# UNKOWN_num_I += 1
# elif word.isupper():
# UNKOWN_allUpper_I += 1
# elif pattern_mix.match(word) != None:
# UNKOWN_mix_I += 1
# UNKOWN_long_O = 0
# UNKOWN_num_O = 0
# UNKOWN_allUpper_O = 0
# UNKOWN_mix_O = 0
# for word in tag_word_prob_dict['O\n'].keys():
# if tag_word_prob_dict['O\n'][word] == 1 / 345128.0:
# if len(word) >= 8:
# UNKOWN_long_O += 1
# elif pattern_num.match(word) != None:
# UNKOWN_num_O += 1
# elif word.isupper():
# UNKOWN_allUpper_O += 1
# elif pattern_mix.match(word) != None:
# UNKOWN_mix_O += 1
# print 'long word count:'
# # 567, 548, 6860
# print UNKOWN_long_B, UNKOWN_long_I, UNKOWN_long_O
# print 'word has num count:'
# # 1781, 580, 1580
# print UNKOWN_num_B, UNKOWN_num_I, UNKOWN_num_O
# print 'all upper word count:'
# # 564, 295, 1426
# print UNKOWN_allUpper_B, UNKOWN_allUpper_I, UNKOWN_allUpper_O
# print 'mix word:'
# # 916, 272, 1611
# print UNKOWN_mix_B, UNKOWN_mix_I, UNKOWN_mix_O
# print 'other word:'
# # 358, 321, 1891
# print once_count_B - UNKOWN_long_B - UNKOWN_num_B - UNKOWN_allUpper_B - UNKOWN_mix_B
# print once_count_I - UNKOWN_long_I - UNKOWN_num_I - UNKOWN_allUpper_I - UNKOWN_mix_I
# print once_count_O - UNKOWN_long_O - UNKOWN_num_O - UNKOWN_allUpper_O - UNKOWN_mix_O
# # update the tag word prob dict
# for word in tag_word_prob_dict['B\n'].keys():
# if tag_word_prob_dict['B\n'][word] == 1 / 16637.0:
# del tag_word_prob_dict['B\n'][word]
# for word in tag_word_prob_dict['I\n'].keys():
# if tag_word_prob_dict['I\n'][word] == 1 / 24435.0:
# del tag_word_prob_dict['I\n'][word]
# for word in tag_word_prob_dict['O\n'].keys():
# if tag_word_prob_dict['O\n'][word] == 1 / 16637.0:
# del tag_word_prob_dict['O\n'][word]
prob_sum_B = 0.0
for word in tag_word_prob_dict['B\n'].keys():
prob_sum_B += tag_word_prob_dict['B\n'][word]
prob_sum_I = 0.0
for word in tag_word_prob_dict['I\n'].keys():
prob_sum_I += tag_word_prob_dict['I\n'][word]
prob_sum_O = 0.0
for word in tag_word_prob_dict['O\n'].keys():
prob_sum_O += tag_word_prob_dict['O\n'][word]
print prob_sum_B, prob_sum_I, prob_sum_O
trans_item_list = []
for i in range(0, len(tag_list) - 1):
item = [tag_list[i], tag_list[i + 1]]
trans_item_list.append(item)
B_trans_prob_dict = {}
B_trans_prob_dict['B\n'] = (trans_item_list.count(['B\n', 'B\n']) + 1) / (16637.0 + 3.0)
B_trans_prob_dict['I\n'] = (trans_item_list.count(['B\n', 'I\n']) + 1) / (16637.0 + 3.0)
B_trans_prob_dict['O\n'] = (trans_item_list.count(['B\n', 'O\n']) + 1) / (16637.0 + 3.0)
I_trans_prob_dict = {}
I_trans_prob_dict['B\n'] = (trans_item_list.count(['I\n', 'B\n']) + 1) / (24435.0 + 3.0)
I_trans_prob_dict['I\n'] = (trans_item_list.count(['I\n', 'I\n']) + 1) / (24435.0 + 3.0)
I_trans_prob_dict['O\n'] = (trans_item_list.count(['I\n', 'O\n']) + 1) / (24435.0 + 3.0)
O_trans_prob_dict = {}
O_trans_prob_dict['B\n'] = (trans_item_list.count(['O\n', 'B\n']) + 1) / (345128.0 + 3.0)
O_trans_prob_dict['I\n'] = (trans_item_list.count(['O\n', 'I\n']) + 1) / (345128.0 + 3.0)
O_trans_prob_dict['O\n'] = (trans_item_list.count(['O\n', 'O\n']) + 1) / (345128.0 + 3.0)
tag_trans_prob_dict = {}
tag_trans_prob_dict['B\n'] = B_trans_prob_dict
tag_trans_prob_dict['I\n'] = I_trans_prob_dict
tag_trans_prob_dict['O\n'] = O_trans_prob_dict
print tag_trans_prob_dict
num_sentence = word_list.count('.')
# 15509
print num_sentence
start_prob_dict = {}
start_prob_dict['B\n'] = 1.0 / (num_sentence + 2)
start_prob_dict['I\n'] = 1.0 / (num_sentence + 2)
start_prob_dict['O\n'] = 1 - start_prob_dict['B\n'] - start_prob_dict['I\n']
print start_prob_dict
filein.close()
# def viterbi(obs, states, start_p, trans_p, emit_p):
# if len(obs) < 2:
# return ['O\n']
# V = [{y:(start_p[y] * emit_p[y][obs[0]]) for y in states}]
# path = {y:[y] for y in states}
# for y in states:
# V[0][y] = start_p[y] * emit_p[y][obs[0]]
# path[y] = [y]
# for t in range(1, len(obs)):
# V.append({})
# newpath = {}
# for y in states:
# (prob, state) = max((V[t-1][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states)
# V[t][y] = prob
# newpath[y] = path[state] + [y]
# path = newpath
# (prob, state) = max((V[t][y], y) for y in states)
# return path[state]
# def read_test_file(filename):
# filein = open(filename, 'r')
# total_line = ''
# for line in filein:
# total_line += line
# sentence_list = total_line.split('\n\n')
# test_list = []
# for each in sentence_list:
# words = each.split('\n')
# if '' in words:
# words.remove('')
# test_list.append(tuple(words))
# return test_list
# tags_tuple = ('B\n', 'I\n', 'O\n')
# test_word_list = read_test_file('modified_test.txt')
# # print len(test_word_list)
# # print test_word_list[-1]
# res_list = []
# for words_tuple in test_word_list:
# path = viterbi(words_tuple, tags_tuple, start_prob_dict, tag_trans_prob_dict, tag_word_prob_dict)
# res_list.append(tuple(path))
# print len(res_list)
# count = 0
# for path in res_list:
# if 'B\n' in path:
# count += 1
# print count
# raw_word_list = read_test_file('test.txt')
# def output_result(word_list, tag_list, output_filename):
# fileout = open(output_filename, 'w')
# for i in range(0, len(word_list)):
# for j in range(0, len(word_list[i])):
# line = word_list[i][j] + '\t' + tag_list[i][j]
# fileout.write(line)
# # if word_list[i][j] == '. ':
# fileout.write('\n')
# fileout.close()
# output_result(raw_word_list, res_list, 'output.txt')