We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
非常好的想法,感觉预训练模型抽取不重要语句成分可以考虑用一下百度LAC的rank方法,给出句子中每个词语的重要程度(https://github.com/baidu/lac)。我尝试了你提到的yake包,感觉对中文好像不太友好😂,也有可能我用的不太对。 我有考虑过遮盖一些重要词再利用Bert或者T5类的模型生成去构造增强对比样本,训练无监督语义表征,不过目前效果不是很好。感觉可以利用你这类的方法作为一个语句增强样本再试试。
The text was updated successfully, but these errors were encountered:
Thanks for your suggestion! We will try the tool you mentioned in future research.
Sorry, something went wrong.
No branches or pull requests
非常好的想法,感觉预训练模型抽取不重要语句成分可以考虑用一下百度LAC的rank方法,给出句子中每个词语的重要程度(https://github.com/baidu/lac)。我尝试了你提到的yake包,感觉对中文好像不太友好😂,也有可能我用的不太对。
我有考虑过遮盖一些重要词再利用Bert或者T5类的模型生成去构造增强对比样本,训练无监督语义表征,不过目前效果不是很好。感觉可以利用你这类的方法作为一个语句增强样本再试试。
The text was updated successfully, but these errors were encountered: