-
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathllama2-pdf-q-a-streamlit-app.py
109 lines (87 loc) · 4.33 KB
/
llama2-pdf-q-a-streamlit-app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import json
import os
import streamlit as st
from cassandra.auth import PlainTextAuthProvider
from cassandra.cluster import Cluster
from llama_index import ServiceContext
from llama_index import set_global_service_context
from llama_index import VectorStoreIndex, SimpleDirectoryReader, StorageContext
from llama_index.embeddings import GradientEmbedding
from llama_index.llms import GradientBaseModelLLM
from llama_index.vector_stores import CassandraVectorStore
from copy import deepcopy
from tempfile import NamedTemporaryFile
@st.cache_resource
def create_datastax_connection():
cloud_config= {'secure_connect_bundle': 'secure-connect-bhavesh-astra-test.zip'}
with open("bhavesh_astra_test-token.json") as f:
secrets = json.load(f)
CLIENT_ID = secrets["clientId"]
CLIENT_SECRET = secrets["secret"]
auth_provider = PlainTextAuthProvider(CLIENT_ID, CLIENT_SECRET)
cluster = Cluster(cloud=cloud_config, auth_provider=auth_provider)
astra_session = cluster.connect()
return astra_session
def main():
index_placeholder = None
st.set_page_config(page_title = "Chat with your PDF using Llama2 & Llama Index", page_icon="🦙")
st.header('🦙 Chat with your PDF using Llama2 model & Llama Index')
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "activate_chat" not in st.session_state:
st.session_state.activate_chat = False
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar = message['avatar']):
st.markdown(message["content"])
session = create_datastax_connection()
os.environ['GRADIENT_ACCESS_TOKEN'] = "Enter your Token"
os.environ['GRADIENT_WORKSPACE_ID'] = "Enter your Workspace ID"
llm = GradientBaseModelLLM(base_model_slug="llama2-7b-chat", max_tokens=400)
embed_model = GradientEmbedding(
gradient_access_token = os.environ["GRADIENT_ACCESS_TOKEN"],
gradient_workspace_id = os.environ["GRADIENT_WORKSPACE_ID"],
gradient_model_slug="bge-large")
service_context = ServiceContext.from_defaults(
llm = llm,
embed_model = embed_model,
chunk_size=256)
set_global_service_context(service_context)
with st.sidebar:
st.subheader('Upload Your PDF File')
docs = st.file_uploader('⬆️ Upload your PDF & Click to process',
accept_multiple_files = False,
type=['pdf'])
if st.button('Process'):
with NamedTemporaryFile(dir='.', suffix='.pdf') as f:
f.write(docs.getbuffer())
with st.spinner('Processing'):
documents = SimpleDirectoryReader(".").load_data()
index = VectorStoreIndex.from_documents(documents,
service_context=service_context)
query_engine = index.as_query_engine()
if "query_engine" not in st.session_state:
st.session_state.query_engine = query_engine
st.session_state.activate_chat = True
if st.session_state.activate_chat == True:
if prompt := st.chat_input("Ask your question from the PDF?"):
with st.chat_message("user", avatar = '👨🏻'):
st.markdown(prompt)
st.session_state.messages.append({"role": "user",
"avatar" :'👨🏻',
"content": prompt})
query_index_placeholder = st.session_state.query_engine
pdf_response = query_index_placeholder.query(prompt)
cleaned_response = pdf_response.response
with st.chat_message("assistant", avatar='🤖'):
st.markdown(cleaned_response)
st.session_state.messages.append({"role": "assistant",
"avatar" :'🤖',
"content": cleaned_response})
else:
st.markdown(
'Upload your PDFs to chat'
)
if __name__ == '__main__':
main()