-
Notifications
You must be signed in to change notification settings - Fork 19
/
TopicSpecificRank.py
326 lines (241 loc) · 8.92 KB
/
TopicSpecificRank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import math
import heapq
import numpy as np
from scipy.sparse import csr_matrix as SparseMatrix
class TopicSpecificRank:
"""Similar to PageRank but the teleport set is a subset(related topics)
of all nodes.
...
Parameters
----------
beta : float
Probability with which teleports will occur
edges : collections.defaltdict(list)
Adjacency list containing information connections in web-graph
epsilon : float
A small value and total error in ranks should be less than epsilon
max_iterations : int
Maximum number of times to apply power iteration
node_num : int
Number of nodes in the web-graph
PageRank_vector : numpy.ndarray [1-dimensional, dtype=float]
Contains PageRank of each node in the web-graph
order : {'beta', 'edges', 'epsilon', 'max_iterations', 'node_num',
'PageRank_vector'}
Parameters follows precisely the above order.
None of the parameter is optional.
Methods
-------
get_similarTopicPages()
Classifies topics pages in different classes.
matrix_get_initailRankMatrix()
Initailises the topicSpecificRank Matrix.
matrix_get_topicSpecificGoogleMatrix()
Creates the Google Matrix which is used in power iteration.
matrix_get_topicSpecificRank()
Applies power iteration on Google Matrix and Initial Rank Matrix
to get TopicSpecificRank Matrix.
list_get_topicSpecificRank()
Alternative method for power iteration which used much less RAM.
topicSpecificRank()
Utility function which call other functions and returns rank vector.
"""
def __init__(self, beta, edges, epsilon, max_iterations, node_num,
PageRank_vector):
self.beta = beta
self.edges = edges
self.epsilon = epsilon
self.node_num = node_num
self.PageRank_vector = PageRank_vector
self.MAX_ITERATIONS = max_iterations
def get_similarTopicPages(self):
"""Classifies topics pages in different classes.
[INCOMPLETE] Write your own implementation to classify pages into
topics.
...
Parameters
----------
None
[May add more if required.]
Returns
-------
lol_of_topic_pages : list of list of int
Each inner list contains the related pages.
Each page belongs to only one inner list.
Outer list contains all such inner lists.
"""
pass
def matrix_get_initailRankMatrix(self):
"""Initailises the topicSpecificRank Matrix.
Parameters
----------
None
Returns
-------
initial_rank_vector : scipy.sparse.csr_matrix [shape = (n x 1),
n is `node_num`]
Ranks are distributed equally among all pages, initially.
"""
initial_rank_list = [1/(self.node_num) for i in range(self.node_num)]
initial_rank_vector = SparseMatrix(np.matrix(initial_rank_list).
transpose())
return initial_rank_vector
def matrix_get_topicSpecificGoogleMatrix(self, related_pages):
"""Creates the Google Matrix which is used in power iteration.
Parameters
----------
related_pages : list of int
Contains list of pages which belong to the same topic.
Returns
-------
google_matrix : scipy.sparse.csr_matrix [shape = (n x n), n is
`node_num`]
It contains proportion of rank that will propagate from a
page to another page.
Proportion of rank depends on degree of node and leaked rank.
"""
related_set_size = len(related_pages)
teleport_matrix_row = []
teleport_matrix_col = []
teleport_matrix_data = []
for related_node in related_pages:
for node in range(self.node_num):
teleport_matrix_col.append(node)
teleport_matrix_row.append(related_node)
teleport_matrix_data.append(
(1 - self.beta) / related_set_size)
teleport_matrix = SparseMatrix((teleport_matrix_data, (
teleport_matrix_row, teleport_matrix_col)), shape = (self.node_num,
self.node_num))
connection_matrix_row = []
connection_matrix_col = []
connection_matrix_data = []
for parent_node in range(self.node_num):
for child_node in self.edges[parent_node]:
connection_matrix_col.append(parent_node)
connection_matrix_row.append(child_node)
connection_matrix_data.append(
self.beta / (len(self.edges[parent_node])))
connection_matrix = SparseMatrix((connection_matrix_data, (
connection_matrix_row, connection_matrix_col)), shape = (self.
node_num, self.node_num))
google_matrix = connection_matrix + teleport_matrix
return google_matrix
def matrix_get_topicSpecificRank(self, teleport_set, initial_rank_vector,
google_matrix):
"""Calculates TopicSpecificRank of each node taking some related_pages
as `teleport_set`.
This method works by applying power iteration until convergence
or till iterations reach `MAX_ITERATIONS`, whichever happens first.
[USAGE WARNING] : If graph is large, then sparse matrix may become
huge and use up the entire RAM(which is not a condition to be in).
...
Parameters
----------
teleport_set : list of int
List of pages to which a random walker in the web-graph can
teleport to.
In TopicSpecificRank this set corresponds to pages of same topic.
initial_rank_vector : scipy.sparse.csr_matrix [shape = (n x 1),
n is `node_num`]
Ranks are distributed equally among all pages, initially.
google_matrix : scipy.sparse.csr_matrix [shape = (n x n), n is
`node_num`]
It contains proportion of rank that will propagate from a
page to another page.
Returns
-------
final_rank_vector : scipy.sparse.csr_matrix [shape = (n x 1),
n is `node_num`]
Contains TopicSpecificRank of each node in the web-graph.
"""
iterations = 0
diff = math.inf
teleport_set_size = len(teleport_set)
final_rank_vector = SparseMatrix(np.zeros(self.node_num).transpose())
while(iterations < self.MAX_ITERATIONS and diff > self.epsilon):
new_rank_vector = google_matrix * initial_rank_vector
leaked_rank = (1-SparseMatrix.sum(new_rank_vector))/
teleport_set_size
leaked_rank_vector = SparseMatrix(np.array([leaked_rank if node in
teleport_set else 0 for node in range(self.node_num)])).
transpose()
final_rank_vector = new_rank_vector + leaked_rank_vector
diff = SparseMatrix.sum(
abs(final_rank_vector - initial_rank_vector))
initial_rank_vector = final_rank_vector
iterations += 1
print("At iteration: " + str(iterations))
return final_rank_vector
def list_get_topicSpecificRank(self, teleport_set):
"""Calculates TopicSpecificRank of each node taking some related
pages as `teleport_set`. Related Pages belong to same topic.
Parameters
----------
teleport_set : list of int
List of pages to which a random walker in the web-graph can
teleport to.
In TopicSpecificRank this set corresponds to pages of same topic.
Returns
-------
final_rank_vector : numpy.ndarray [1-dimensional, dtype=float]
Contains TopicSpecificRank of each node in the web-graph.
"""
diff = math.inf
iterations = 0
teleport_set_size = len(teleport_set)
final_rank_vector = np.zeros(self.node_num)
initial_rank_vector = np.fromiter(
[1/teleport_set_size if node in teleport_set else 0 for node in
range(self.node_num)], dtype='float')
while(iterations < self.MAX_ITERATIONS and diff > self.epsilon):
new_rank_vector = np.zeros(self.node_num)
for parent in self.edges:
for child in self.edges[parent]:
new_rank_vector[child] += initial_rank_vector[parent] /
len(self.edges[parent])
leaked_rank = (1 - sum(new_rank_vector)) / teleport_set_size
leaked_rank_vector = np.array([leaked_rank if node in teleport_set
else 0 for node in range(self.node_num)])
final_rank_vector = new_rank_vector + leaked_rank_vector
diff = sum(abs(final_rank_vector - initial_rank_vector))
initial_rank_vector = final_rank_vector
iterations += 1
print("At iteration: " + str(iterations))
return final_rank_vector
def topicSpecificRank(self):
"""Utility function which calls other functions in a specific order.
Parameters
----------
None
Returns
-------
[Assumption: list_get_topicSpecificRank is used instead of
matrix_get_topicSpecificRank]
dict_of_rank_vectors : dict of int and numpy.ndarray
[1-dimensional, dtype=float]
Example:
{
int: ndarray,
int: ndarray,
int: ndarray,
...
}
int is the topic number
ndarray has rank of pages in the web-graph wrt that topic.
"""
lol_of_topic_pages = self.matrix_get_similarTopicPages()
list_of_rank_vectors = {}
for topic in lol_of_topic_pages:
## approach 1 :: uses adjacency list to calc. rank
topicSpecificRank_vector = list_get_topicSpecificRank(topic)
## approach 2: RAM eater :: uses SparseMatrices to calc. rank
# initialRank_vector = self.matrix_get_initailRankMatrix()
# google_matrix = self.matrix_get_topicSpecificGoogleMatrix(
# topic)
# topicSpecificRank_vector = self.matrix_get_topicSpecificRank(
# topic, initialRank_vector, google_matrix)
list_of_rank_vectors[topic] = topicSpecificRank_vector
# can append topic number instead of topic(list)^^
# create a function to map topic with topic_number
return list_of_rank_vectors