-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRobots.jl
79 lines (57 loc) · 1.71 KB
/
Robots.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
module Robots
using Distributions
using LinearAlgebra
export FieldBot, update
mutable struct FieldBot
Dx :: Integer
Du :: Integer
Dy :: Integer
Δt :: Float64
g :: Function
A :: Matrix{Float64}
B :: Matrix{Float64}
Q :: Matrix{Float64}
R :: Matrix{Float64}
control_lims ::Tuple{Float64,Float64}
function FieldBot(g::Function, ρ::Vector; σ::Float64=1.0, Δt::Float64=1.0, control_lims=(-1.,1.))
Dx = 4
Du = 2
Dy = length(g(zeros(Dx)))
# State transition
A = [1. 0. Δt 0.;
0. 1. 0. Δt;
0. 0. 1. 0.;
0. 0. 0. 1.]
# Control matrix
B = [0. 0.;
0. 0.;
Δt 0.;
0. Δt]
# Process noise covariance matrix
Q = [Δt^3/3*ρ[1] 0.0 Δt^2/2*ρ[1] 0.0;
0.0 Δt^3/3*ρ[2] 0.0 Δt^2/2*ρ[2];
Δt^2/2*ρ[1] 0.0 Δt*ρ[1] 0.0;
0.0 Δt^2/2*ρ[2] 0.0 Δt*ρ[2]]
# Measurement noise covariance matrix
R = diagm(ρ)
return new(Dx,Du,Dy,Δt,g,A,B,Q,R,control_lims)
end
end
function step(bot::FieldBot, z_kmin1, u_k)
"Stochastic state transition"
clamp!(u_k, bot.control_lims...)
return rand(MvNormal(bot.A*z_kmin1 + bot.B*u_k, bot.Q))
end
function emit(bot::FieldBot, z_k)
"Stochastic observation"
return rand(MvNormal(bot.g(z_k), bot.R))
end
function update(bot::FieldBot, z_kmin1, u_k)
"Update environment"
# State transition
z_k = step(bot, z_kmin1, u_k)
# Emit noisy observation
y_k = emit(bot, z_k)
return y_k, z_k
end
end