forked from WooJin-Cho/Hyper-LR-PINN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
178 lines (134 loc) · 7.64 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
from config import get_config
import torch
import random
import torch.backends.cudnn as cudnn
import pandas as pd
from model import LR_PINN_phase1, LR_PINN_phase2
from utils import orthogonality_reg, f_cal_phase2, get_params
import os
from sklearn.metrics import explained_variance_score, max_error
args = get_config()
device = torch.device(args.device)
def main():
args = get_config()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
device = torch.device(args.device)
print("========================================")
print("Use Device :", device)
print("Available cuda devices :", torch.cuda.device_count())
print("Current cuda device :", torch.cuda.current_device())
print("Name of cuda device :", torch.cuda.get_device_name(device))
print("========================================")
hidden_dim = 50
pde_type = args.pde_type
initial_condition = args.init_cond
start_coeff_1 = args.start_coeff_1
end_coeff_1 = args.end_coeff_1
target_coeff_1 = args.target_coeff_1
target_coeff_2 = args.target_coeff_2
target_coeff_3 = args.target_coeff_3
###################### Dataset #######################
train_data_f = pd.read_csv(f'./data_gen/dataset/{pde_type}/train/train_f_{target_coeff_1}_{pde_type}.csv')
train_data_u = pd.read_csv(f'./data_gen/dataset/{pde_type}/train/train_u_{target_coeff_1}_{pde_type}.csv')
train_data_bd = pd.read_csv(f'./data_gen/dataset/{pde_type}/train/train_boundary_{target_coeff_1}_{pde_type}.csv')
test_data = pd.read_csv(f'./data_gen/dataset/{pde_type}/test/test_{target_coeff_1}_{pde_type}.csv')
######################################################
target_coeff_1 = torch.tensor(target_coeff_1).unsqueeze(dim=0)
target_coeff_1 = target_coeff_1.type(torch.float)
target_coeff_2 = torch.tensor(target_coeff_2).unsqueeze(dim=0)
target_coeff_2 = target_coeff_2.type(torch.float)
target_coeff_3 = torch.tensor(target_coeff_3).unsqueeze(dim=0)
target_coeff_3 = target_coeff_3.type(torch.float)
mse_cost_function = torch.nn.MSELoss() # Mean squared error
############### Network Initialization ################
net_initial = LR_PINN_phase1(hidden_dim)
net_initial.load_state_dict(torch.load(f'./param/phase1/{pde_type}/{initial_condition}/PINN_{start_coeff_1}_{end_coeff_1}.pt'))
tanh = nn.Tanh()
relu = nn.ReLU()
start_w = net_initial.state_dict()['start_layer.weight']
start_b = net_initial.state_dict()['start_layer.bias']
end_w = net_initial.state_dict()['end_layer.weight']
end_b = net_initial.state_dict()['end_layer.bias']
col_0 = net_initial.state_dict()['col_basis_0']
col_1 = net_initial.state_dict()['col_basis_1']
col_2 = net_initial.state_dict()['col_basis_2']
row_0 = net_initial.state_dict()['row_basis_0']
row_1 = net_initial.state_dict()['row_basis_1']
row_2 = net_initial.state_dict()['row_basis_2']
meta_layer_1_w = net_initial.state_dict()['meta_layer_1.weight']
meta_layer_1_b = net_initial.state_dict()['meta_layer_1.bias']
meta_layer_2_w = net_initial.state_dict()['meta_layer_2.weight']
meta_layer_2_b = net_initial.state_dict()['meta_layer_2.bias']
meta_layer_3_w = net_initial.state_dict()['meta_layer_3.weight']
meta_layer_3_b = net_initial.state_dict()['meta_layer_3.bias']
meta_alpha_0_w = net_initial.state_dict()['meta_alpha_0.weight']
meta_alpha_0_b = net_initial.state_dict()['meta_alpha_0.bias']
meta_alpha_1_w = net_initial.state_dict()['meta_alpha_1.weight']
meta_alpha_1_b = net_initial.state_dict()['meta_alpha_1.bias']
meta_alpha_2_w = net_initial.state_dict()['meta_alpha_2.weight']
meta_alpha_2_b = net_initial.state_dict()['meta_alpha_2.bias']
target_coeff = torch.cat([target_coeff_1, target_coeff_2, target_coeff_3], dim=0)
meta_vector = torch.matmul(target_coeff, meta_layer_1_w.T) + meta_layer_1_b
meta_vector = tanh(meta_vector)
meta_vector = torch.matmul(meta_vector, meta_layer_2_w.T) + meta_layer_2_b
meta_vector = tanh(meta_vector)
meta_vector = torch.matmul(meta_vector, meta_layer_3_w.T) + meta_layer_3_b
meta_vector = tanh(meta_vector)
alpha_0 = relu(torch.matmul(meta_vector, meta_alpha_0_w.T) + meta_alpha_0_b)
alpha_1 = relu(torch.matmul(meta_vector, meta_alpha_1_w.T) + meta_alpha_1_b)
alpha_2 = relu(torch.matmul(meta_vector, meta_alpha_2_w.T) + meta_alpha_2_b)
########################################################
alpha_0_nonzero_index = torch.nonzero(alpha_0).squeeze()
alpha_1_nonzero_index = torch.nonzero(alpha_1).squeeze()
alpha_2_nonzero_index = torch.nonzero(alpha_2).squeeze()
print(f'LR_layer_1 (rank) : {len(alpha_0_nonzero_index)}')
print(f'LR_layer_2 (rank) : {len(alpha_1_nonzero_index)}')
print(f'LR_layer_3 (rank) : {len(alpha_2_nonzero_index)}')
alpha_0 = torch.gather(input=alpha_0, dim=0, index=alpha_0_nonzero_index)
alpha_1 = torch.gather(input=alpha_1, dim=0, index=alpha_1_nonzero_index)
alpha_2 = torch.gather(input=alpha_2, dim=0, index=alpha_2_nonzero_index)
col_0 = torch.index_select(input=col_0, dim=1, index=alpha_0_nonzero_index)
col_1 = torch.index_select(input=col_1, dim=1, index=alpha_1_nonzero_index)
col_2 = torch.index_select(input=col_2, dim=1, index=alpha_2_nonzero_index)
row_0 = torch.index_select(input=row_0, dim=0, index=alpha_0_nonzero_index)
row_1 = torch.index_select(input=row_1, dim=0, index=alpha_1_nonzero_index)
row_2 = torch.index_select(input=row_2, dim=0, index=alpha_2_nonzero_index)
net = LR_PINN_phase2(hidden_dim, start_w, start_b, end_w, end_b,
col_0, col_1, col_2, row_0, row_1, row_2,
alpha_0, alpha_1, alpha_2)
net = net.to(device)
net.load_state_dict(torch.load(f'./param/phase2/{pde_type}/{initial_condition}/PINN_{start_coeff_1}_{end_coeff_1}_{int(target_coeff_1.item())}.pt'))
model_size = get_params(net)
print('Number of model parameters :', model_size)
# test point
x_test = Variable(torch.from_numpy(np.array(np.expand_dims(test_data['x_data'], 1))).float(), requires_grad=False).to(device)
t_test = Variable(torch.from_numpy(np.array(np.expand_dims(test_data['t_data'], 1))).float(), requires_grad=False).to(device)
u_test = Variable(torch.from_numpy(np.array(np.expand_dims(test_data['u_data'], 1))).float(), requires_grad=False).to(device)
with torch.autograd.no_grad():
net.eval()
u_out_test = net(x_test, t_test)
L2_error_norm = torch.linalg.norm(u_out_test-u_test, 2, dim = 0)
L2_true_norm = torch.linalg.norm(u_test, 2, dim = 0)
L2_absolute_error = torch.mean(torch.abs(u_out_test-u_test))
L2_relative_error = L2_error_norm / L2_true_norm
u_test_cpu = u_test.cpu()
u_out_test_cpu = u_out_test.cpu()
Max_err = max_error(u_test_cpu, u_out_test_cpu)
Ex_var_score = explained_variance_score(u_test_cpu, u_out_test_cpu)
print('L2_abs_err :', L2_absolute_error.item())
print('L2_rel_err :', L2_relative_error.item())
print('Max_err :', Max_err)
print('Ex_var_score :', Ex_var_score)
print('#########################################################################################')
if __name__ == "__main__":
main()