Skip to content

binaryvexjuiit/Detecting-Facial-Diseases-Through-Neural-Networks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation

Face-Skin-disease

Face Skin disease detection comparison using CNN, CNN-LSTM, and Mobilenet To classify face skin diseases such as The categories including Acne, Actinic keratosis, basal cell, Lupus-Chronic-Cutaneous, Rosacea, Seborrheic, squamous cell - Neural Network such as CNN was implemented. One hot encoding implemented to classify each of the class from 0-5. To compare these models performance, pre-trained Mobilenet was used.CNN model got train accuracy 97% and the test accuracy is 82%. In contrast, Mobilenet Version - 2 has train accuracy 93% while the test accuracy is 78%. Proposed CNN model has outperformed the pre-trained mobilenet model.

Releases

No releases published

Packages

No packages published

Languages