-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path240-medium-Search_a_2D_Matrix_II.js
90 lines (73 loc) · 1.89 KB
/
240-medium-Search_a_2D_Matrix_II.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/**
240. Search a 2D Matrix II
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
*/
/**
* @param {number[][]} matrix
* @param {number} target
* @return {boolean}
*/
var searchMatrix2 = function (matrix, target) {
console.time('耗时');
if (!matrix.length || !matrix[0].length) return false;
var x = 0;
for (var i = 0; i < matrix[0].length; i++) {
if (matrix[0][i] === target) {
console.timeEnd('耗时');
return true;
} else if (matrix[0][i] > target) {
x = i - 1;
break;
}
}
for (var i = 0; i < matrix.length; i++) {
if (x < 0) {
console.timeEnd('耗时');
return false;
}
for (var j = 0; j <= (x ? x : matrix[0].length); j++) {
if (matrix[i][j] === target) {
console.timeEnd('耗时');
return true;
} else if (matrix[i][j] > target){
x = j - 1;
break;
}
}
}
console.timeEnd('耗时');
return false;
};
var searchMatrix = function (matrix, target) {
console.time('耗时');
if (!matrix.length || !matrix[0].length) return false;
var x = matrix[0].length - 1;
var y = 0;
while (x >= 0 && y < matrix.length) {
if (matrix[y][x] === target) {
console.timeEnd('耗时');
return true;
} else if (matrix[y][x] > target) {
x--;
} else {
y++;
}
}
console.timeEnd('耗时');
return false;
};
console.log(searchMatrix([[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], 5)
)