-
Notifications
You must be signed in to change notification settings - Fork 0
/
8.1.1. Survival Analysis - TCGA - Necroptosis - Unique Genes - Tumor.Rmd
494 lines (400 loc) · 14.1 KB
/
8.1.1. Survival Analysis - TCGA - Necroptosis - Unique Genes - Tumor.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
---
title: "Survival Analysis"
subtitle: "Colorectal Cancer | Necroptosis | Unique Genes per RCD Type | Gene Expression of Tumor Samples"
author:
- Mark Edward M. Gonzales^[De La Salle University, Manila, Philippines, gonzales.markedward@gmail.com]
- Dr. Anish M.S. Shrestha^[De La Salle University, Manila, Philippines, anish.shrestha@dlsu.edu.ph]
output: html_notebook
---
## I. Preliminaries
### Loading libraries
```{r, warning=FALSE, message=FALSE}
library("tidyverse")
library("tibble")
library("msigdbr")
library("ggplot2")
library("TCGAbiolinks")
library("RNAseqQC")
library("DESeq2")
library("ensembldb")
library("purrr")
library("magrittr")
library("vsn")
library("matrixStats")
library("dplyr")
library("grex")
library("survminer")
library("survival")
```
## II. Downloading the TCGA gene expression data
Create a function for downloading TCGA gene expression data.
For more detailed documentation, refer to `2. Differential Gene Expression Analysis - TCGA.Rmd`.
```{r}
query_and_filter_samples <- function(project) {
query_tumor <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Primary Tumor"
)
tumor <- getResults(query_tumor)
query_normal <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Solid Tissue Normal"
)
normal <- getResults(query_normal)
submitter_ids <- inner_join(tumor, normal, by = "cases.submitter_id") %>%
dplyr::select(cases.submitter_id)
tumor <- tumor %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
normal <- normal %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
samples <- rbind(tumor, normal)
unique(samples$sample_type)
query_project <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = c("Solid Tissue Normal", "Primary Tumor"),
barcode = as.list(samples$sample.submitter_id)
)
# If this is your first time running this notebook (i.e., you have not yet downloaded the results of the query in the previous block),
# uncomment the line below
# GDCdownload(query_project)
return(list(samples = samples, query_project = query_project))
}
```
Download the TCGA gene expression data for colorectal cancer (TCGA-COAD).
```{r, echo = TRUE, message = FALSE, results="hide"}
projects <- c("TCGA-COAD")
with_results_projects <- c()
samples <- list()
project_data <- list()
for (project in projects) {
result <- tryCatch(
{
result <- query_and_filter_samples(project)
samples[[project]] <- result$samples
project_data[[project]] <- result$query_project
with_results_projects <- c(with_results_projects, project)
},
error = function(e) {
}
)
}
```
Running the code block above should generate and populate a directory named `GDCdata`.
## III. Data preprocessing
Construct the RNA-seq count matrix for each cancer type.
```{r, echo = TRUE, message = FALSE, results="hide"}
tcga_data <- list()
tcga_matrix <- list()
projects <- with_results_projects
for (project in projects) {
tcga_data[[project]] <- GDCprepare(project_data[[project]], summarizedExperiment = TRUE)
}
```
```{r}
for (project in projects) {
count_matrix <- assay(tcga_data[[project]], "unstranded")
# Remove duplicate entries
count_matrix_df <- data.frame(count_matrix)
count_matrix_df <- count_matrix_df[!duplicated(count_matrix_df), ]
count_matrix <- data.matrix(count_matrix_df)
rownames(count_matrix) <- cleanid(rownames(count_matrix))
count_matrix <- count_matrix[!(duplicated(rownames(count_matrix)) | duplicated(rownames(count_matrix), fromLast = TRUE)), ]
tcga_matrix[[project]] <- count_matrix
}
```
Format the `samples` table so that it can be fed as input to DESeq2.
```{r}
for (project in projects) {
rownames(samples[[project]]) <- samples[[project]]$cases
samples[[project]] <- samples[[project]] %>%
dplyr::select(case = "cases.submitter_id", type = "sample_type")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Solid Tissue Normal", "normal")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Primary Tumor", "tumor")
}
```
DESeq2 requires the row names of `samples` should be identical to the column names of `count_matrix`.
```{r, echo = TRUE, results="hide"}
for (project in projects) {
colnames(tcga_matrix[[project]]) <- gsub(x = colnames(tcga_matrix[[project]]), pattern = "\\.", replacement = "-")
tcga_matrix[[project]] <- tcga_matrix[[project]][, rownames(samples[[project]])]
# Sanity check
print(all(colnames(tcga_matrix[[project]]) == rownames(samples[[project]])))
}
```
## IV. Differential gene expression analysis
For more detailed documentation on obtaining the gene set, refer to `7. Differential Gene Expression Analysis - TCGA - Pan-cancer - Unique Genes.Rmd`.
```{r}
RCDdb <- "temp/unique_genes/necroptosis_ferroptosis_pyroptosis/"
```
Write utility functions for filtering the gene sets, performing differential gene expression analysis, plotting the results, and performing variance-stabilizing transformation.
```{r}
filter_gene_set_and_perform_dgea <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
dds_rcd <- list()
res_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
dds$type <- relevel(dds$type, ref = "normal")
dds_rcd[[project]] <- DESeq(dds)
res_rcd[[project]] <- results(dds_rcd[[project]])
}
deseq.bbl.data <- list()
for (project in projects) {
deseq.results <- res_rcd[[project]]
deseq.bbl.data[[project]] <- data.frame(
row.names = rownames(deseq.results),
baseMean = deseq.results$baseMean,
log2FoldChange = deseq.results$log2FoldChange,
lfcSE = deseq.results$lfcSE,
stat = deseq.results$stat,
pvalue = deseq.results$pvalue,
padj = deseq.results$padj,
cancer_type = project,
gene_symbol = genes[rownames(deseq.results), "gene"]
)
}
deseq.bbl.data.combined <- bind_rows(deseq.bbl.data)
deseq.bbl.data.combined <- dplyr::filter(deseq.bbl.data.combined, abs(log2FoldChange) >= 1.5 & padj < 0.05)
return(deseq.bbl.data.combined)
}
```
```{r}
plot_dgea <- function(deseq.bbl.data.combined) {
sizes <- c("<10^-15" = 4, "10^-10" = 3, "10^-5" = 2, "0.05" = 1)
deseq.bbl.data.combined <- deseq.bbl.data.combined %>%
mutate(fdr_category = cut(padj,
breaks = c(-Inf, 1e-15, 1e-10, 1e-5, 0.05),
labels = c("<10^-15", "10^-10", "10^-5", "0.05"),
right = FALSE
))
top_genes <- deseq.bbl.data.combined %>%
group_by(cancer_type) %>%
mutate(rank = rank(-abs(log2FoldChange))) %>%
dplyr::filter(rank <= 10) %>%
ungroup()
ggplot(top_genes, aes(y = cancer_type, x = gene_symbol, size = fdr_category, fill = log2FoldChange)) +
geom_point(alpha = 0.5, shape = 21, color = "black") +
scale_size_manual(values = sizes) +
scale_fill_gradient2(low = "blue", mid = "white", high = "red", limits = c(min(deseq.bbl.data.combined$log2FoldChange), max(deseq.bbl.data.combined$log2FoldChange))) +
theme_minimal() +
theme(
axis.text.x = element_text(size = 9, angle = 90, hjust = 1)
) +
theme(legend.position = "bottom") +
theme(legend.position = "bottom") +
labs(size = "Adjusted p-value", fill = "log2 FC", y = "Cancer type", x = "Gene")
}
```
```{r}
perform_vsd <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
vsd_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
# Perform variance stabilization
dds <- estimateSizeFactors(dds)
nsub <- sum(rowMeans(counts(dds, normalized = TRUE)) > 10)
vsd <- vst(dds, nsub = nsub)
vsd_rcd[[project]] <- assay(vsd)
}
return(vsd_rcd)
}
```
#### Necroptosis
Fetch the gene set of interest.
```{r}
genes <- read.csv(paste0(RCDdb, "Necroptosis.csv"))
print(genes)
genes$gene_id <- cleanid(genes$gene_id)
genes <- distinct(genes, gene_id, .keep_all = TRUE)
genes <- subset(genes, gene_id != "")
genes
```
Filter the genes to include only those in the gene set of interest, and then perform differential gene expression analysis.
```{r}
deseq.bbl.data.combined <- filter_gene_set_and_perform_dgea(genes)
deseq.bbl.data.combined
```
Plot the results.
```{r}
plot_dgea(deseq.bbl.data.combined)
```
Perform variance-stabilizing transformation for further downstream analysis (i.e., for survival analysis).
```{r, warning=FALSE}
vsd <- perform_vsd(genes)
```
## V. Downloading the clinical data
Download clinical data from TCGA, and perform some preprocessing:
- The `deceased` column should be `FALSE` if the patient is alive and `TRUE` otherwise
- The `overall_survival` column should reflect the follow-up time if the patient is alive and the days to death otherwise
```{r}
download_clinical_data <- function(project) {
clinical_data <- GDCquery_clinic(project)
clinical_data$deceased <- ifelse(clinical_data$vital_status == "Alive", FALSE, TRUE)
clinical_data$overall_survival <- ifelse(clinical_data$vital_status == "Alive",
clinical_data$days_to_last_follow_up,
clinical_data$days_to_death
)
return(clinical_data)
}
```
```{r}
tcga_clinical <- list()
for (project in projects) {
tcga_clinical[[project]] <- download_clinical_data(project)
}
```
## VI. Performing survival analysis
Write utility functions for performing survival analysis.
```{r}
construct_gene_df <- function(gene_of_interest, project) {
gene_df <- vsd[[project]] %>%
as.data.frame() %>%
rownames_to_column(var = "gene_id") %>%
gather(key = "case_id", value = "counts", -gene_id) %>%
left_join(., genes, by = "gene_id") %>%
dplyr::filter(gene == gene_of_interest) %>%
dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "tumor")))
q1 <- quantile(gene_df$counts, probs = 0.25)
q3 <- quantile(gene_df$counts, probs = 0.75)
gene_df$strata <- ifelse(gene_df$counts >= q3, "HIGH", ifelse(gene_df$counts <= q1, "LOW", "MIDDLE"))
gene_df <- gene_df %>% dplyr::filter(strata %in% c("LOW", "HIGH"))
gene_df$case_id <- paste0(sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 1), '-',
sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 2), '-',
sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 3))
gene_df <- merge(gene_df, tcga_clinical[[project]], by.x = "case_id", by.y = "submitter_id")
return(gene_df)
}
```
```{r}
compute_surival_fit <- function(gene_df) {
return (survfit(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
```
```{r}
compute_cox <- function(gene_df) {
return (coxph(Surv(overall_survival, deceased) ~ strata, data=gene_df))
}
```
```{r}
plot_survival <- function(fit) {
return(ggsurvplot(fit,
data = gene_df,
pval = T,
risk.table = T,
risk.table.height = 0.3
))
}
```
```{r}
compute_survival_diff <- function(gene_df) {
return(survdiff(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
```
Perform survival analysis by testing for the difference in the Kaplan-Meier curves using the G-rho family of Harrington and Fleming tests: https://rdrr.io/cran/survival/man/survdiff.html
MLKL is the primary executor of necroptosis.
```{r}
significant_projects <- c()
significant_genes <- c()
ctr <- 1
for (project in projects) {
for (gene in c("MLKL", genes$gene)) {
cat(project, gene, "\n\n")
cat(project, gene, "\n\n")
error <- tryCatch (
{
gene_df <- construct_gene_df(gene, project)
},
error = function(e) {
cat("\n\n============================\n\n")
e
}
)
if(inherits(error, "error")) next
if (nrow(gene_df) > 0) {
fit <- compute_surival_fit(gene_df)
tryCatch (
{
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(ctr)
ctr <- ctr + 1
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
if (pchisq(survival$chisq, length(survival$n)-1, lower.tail = FALSE) < 0.05) {
significant_projects <- c(significant_projects, project)
significant_genes <- c(significant_genes, gene)
}
},
error = function(e) {
}
)
}
cat("\n\n============================\n\n")
}
}
```
Display the results only for genes where a significant difference in survival has been reported.
```{r}
significant_genes
```
```{r}
num_significant_genes <- length(significant_genes)
if (num_significant_genes > 0) {
for (i in 1 : num_significant_genes) {
project <- significant_projects[[i]]
gene <- significant_genes[[i]]
cat(project, gene, "\n\n")
gene_df <- construct_gene_df(gene, project)
fit <- compute_surival_fit(gene_df)
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
cat("\n\n============================\n\n")
}
}
```