The RankedSetSampling package provides a way for researchers to easily implement Ranked Set Sampling in practice.
Sampling is made following the diagram below.
JPS sampling diagramSampling is made following the diagram below.
RSS sampling diagramUse the following code to install this package:
if (!require("remotes")) install.packages("remotes")
remotes::install_github("biometryhub/RankedSetSampling", upgrade = FALSE)
JPS sample and estimator
set.seed(112)
population_size <- 600
# the number of samples to be ranked in each set
H <- 3
with_replacement <- FALSE
sigma <- 4
mu <- 10
n_rankers <- 3
# sample size
n <- 30
rhos <- rep(0.75, n_rankers)
taus <- sigma * sqrt(1 / rhos^2 - 1)
population <- qnorm((1:population_size) / (population_size + 1), mu, sigma)
data <- RankedSetSampling::jps_sample(population, n, H, taus, n_rankers, with_replacement)
data <- data[order(data[, 2]), ]
RankedSetSampling::rss_jps_estimate(
data,
set_size = H,
method = "JPS",
confidence = 0.80,
replace = with_replacement,
model_based = FALSE,
pop_size = population_size
)
#> Estimator Estimate Standard Error 80% Confidence intervals
#> 1 UnWeighted 9.570 0.526 8.88,10.26
#> 2 Sd.Weighted 9.595 0.569 8.849,10.341
#> 3 Aggregate Weight 9.542 0.500 8.887,10.198
#> 4 JPS Estimate 9.502 0.650 8.651,10.354
#> 5 SRS estimate 9.793 0.783 8.766,10.821
#> 6 Minimum 9.542 0.500 8.887,10.198
SBS PPS sample and estimator
set.seed(112)
# SBS sample size, PPS sample size
sample_sizes <- c(5, 5)
n_population <- 233
k <- 0:(n_population - 1)
x1 <- sample(1:13, n_population, replace = TRUE) / 13
x2 <- sample(1:8, n_population, replace = TRUE) / 8
y <- (x1 + x2) * runif(n = n_population, min = 1, max = 2) + 1
measured_sizes <- y * runif(n = n_population, min = 0, max = 4)
population <- matrix(cbind(k, x1, x2, measured_sizes), ncol = 4)
sample_result <- sbs_pps_sample(population, sample_sizes)
# estimate the population mean and construct a confidence interval
df_sample <- sample_result$sample
sample_id <- df_sample[, 1]
y_sample <- y[sample_id]
sbs_pps_estimates <- sbs_pps_estimate(
population, sample_sizes, y_sample, df_sample,
n_bootstrap = 100, alpha = 0.05
)
print(sbs_pps_estimates)
#> n1 n2 Estimate St.error 95% Confidence intervals
#> 1 5 5 2.849 0.1760682 2.451,3.247
This package can be cited using citation("RankedSetSampling")
which
generates
To cite package 'RankedSetSampling' in publications use:
Ozturk O, Rogers S, Kravchuk O, Kasprzak P (2021).
_RankedSetSampling: Easing the Application of Ranked Set Sampling in
Practice_. R package version 0.1.0,
<https://biometryhub.github.io/RankedSetSampling/>.
A BibTeX entry for LaTeX users is
@Manual{,
title = {RankedSetSampling: Easing the Application of Ranked Set Sampling in Practice},
author = {Omer Ozturk and Sam Rogers and Olena Kravchuk and Peter Kasprzak},
year = {2021},
note = {R package version 0.1.0},
url = {https://biometryhub.github.io/RankedSetSampling/},
}
Ozturk, Omer, and Olena Kravchuk. 2021. “Judgment Post-Stratified Assessment Combining Ranking Information from Multiple Sources, with a Field Phenotyping Example.” Journal of Agricultural, Biological and Environmental Statistics. https://doi.org/10.1007/s13253-021-00439-1.