-
Notifications
You must be signed in to change notification settings - Fork 14
/
Dogsvscat.py
176 lines (98 loc) · 3.64 KB
/
Dogsvscat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# coding: utf-8
# In[1]:
import cv2 # working with, mainly resizing, images
import numpy as np # dealing with arrays
import os # dealing with directories
from random import shuffle # mixing up or currently ordered data that might lead our network astray in training.
from tqdm import tqdm
TRAIN_DIR = 'E:/ML_Codes/all1/train'
TEST_DIR = 'E:/ML_Codes/all1/test'
IMG_SIZE = 50
LR = 0.0003
MODEL_NAME = 'dogsvscats-{}-{}.model'.format(LR, '2conv-basic')
# In[2]:
def label_img(img):
word_label = img.split('.')[-3]
# conversion to one-hot array [cat,dog]
# [much cat, no dog]
if word_label == 'cat': return [1,0]
# [no cat, very dog]
elif word_label == 'dog': return [0,1]
# In[3]:
def create_train_data():
training_data = []
for img in tqdm(os.listdir(TRAIN_DIR)):
label = label_img(img)
path = os.path.join(TRAIN_DIR,img)
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
training_data.append([np.array(img),np.array(label)])
shuffle(training_data)
np.save('train_data.npy', training_data)
return training_data
# In[4]:
def process_test_data():
testing_data = []
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR,img)
img_num = img.split('.')[0]
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
testing_data.append([np.array(img), img_num])
shuffle(testing_data)
np.save('test_data.npy', testing_data)
return testing_data
# In[5]:
train_data = create_train_data()
# In[6]:
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR,
loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet)
# In[7]:
train = train_data[:-500]
test = train_data[-500:]
# In[8]:
X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
Y = [i[1] for i in train]
test_x = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
test_y = [i[1] for i in test]
# In[9]:
model.fit({'input': X}, {'targets': Y}, n_epoch=10, validation_set=({'input': test_x}, {'targets': test_y}), show_metric=True, run_id=MODEL_NAME)
# In[13]:
import matplotlib.pyplot as plt
test_data = process_test_data()
#test_data=np.load('test_data.npy')
fig=plt.figure()
for num,data in enumerate(test_data[:12]):
#cat: [1,0]
#dog:[0,1]
img_data = data[0]
y=fig.add_subplot(3,4,num+1)
orig = img_data
data = img_data.reshape(IMG_SIZE, IMG_SIZE,1)
model_out=model.predict([data])[0]
if np.argmax(model_out) == 1:
str_label='DOG'
else:
str_label='Cat'
y.imshow(orig,cmap='gray')
plt.title(str_label)
plt.show()
# In[10]:
# In[ ]: