-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathxgb_cv_new_cv_split_plus_ridge.R
495 lines (438 loc) · 20.6 KB
/
xgb_cv_new_cv_split_plus_ridge.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
library(Matrix)
library(tidyverse)
library(xgboost)
# This R code is training a xgboost model to make predictions per trial and
# then averaging the predictions on a project level using a relaxed-ridge regression
# fit to projects on tha validation folds.
#
# This is the top performing model in our final ensemble. It brutually uses all features
# except for those that we distrust or do not understand. We failed to get a clear understanding
# of the features in the provded dataset that start with "intpersonid" or "intsponsorid" and worry
# that these increment with time for the same sponsor, which might make them very fragile for
# an extrapolation task.
#
# The cross-validation for xgboost hyperparameter optimization uses a past-predicting-the-future
# 26-fold split. However, validation folds do overlap, but they are according to a couple of
# different ways of splitting past-vs-future (sometimes with some future projects in the training data).
# One of the key tricks is to calculate the logloss for the cross-validation folds in the exact same
# way as for the leaderboard (but with the simplifying assumption that one just takes the mean of the
# predictions for each trial - one could perhap shave iterated and averaged using the ridge regression
# coefficients).
#
# Subsequently, ridge regression is used to combine predictions for each trial into an overall prediction
# for a drug-indication-pair. This has the nice side effect of improving calibration (it has much the
# same role as Platt scaling, which is also sometimes used in Kaggle competitions to adjust xgboost
# predictions when logloss is of primary interest).
#
# NOTE 1: The code to save the models is currently commented out to prevent accidentally overwriting them.
# NOTE 2: Script runs 6+ hours unless you have a proper ML platform
# NOTE 3: The model is not particularly hyper-parameter tuned (mostly following a basic recipe that
# has worked okay in some past Kaggle competitions), because the Aridhia platform was too slow to get it
# done quickly (and we were running out of time).
# I REALLY WISH WE HAD HAD A GPU AND rapids.ai AVAILABLE! This would have been so much faster & easier
# on my own machine at home.
# Yes, LightGBM would have been an obvious alternative, for speeding things up, but we decided to
# prioritize other issues in the remaining time.
###########################################################################################################
# Read trial level training data, keep only the variables we hope to be reliable, limit to data after 2007
###########################################################################################################
adat <- read_csv(file="/files/feat_bjoern_trial.csv") %>%
arrange(row_id) %>%
filter(!is.na(outcome) & phaseendyear>2007)
# Remove any variables that xgboost cannot or should not use
# (e.g. character, non-one-hot-encoded categroical like newta, DrugKey, indicationkey), or should not use (like row_id, casewgt1, etc. )
# or that I simply do not trust, because I do not understand them (the intpersonid... and intsponsorid... variables)
traindat = adat %>%
dplyr::select(-row_id, -DrugKey, -indicationkey, -predgroup, -outcome, -GenericName, -strDiseaseType,
-predgroup, -casewgt1, -casewgt2, -newta, -sponstype, -logitoffset, -intidentifiedsites, -starts_with("intpersonid"), -starts_with("intsponsorid"))
#%>% mutate(newta = as_factor(newta),sponstype = as_factor(sponstype)) # instead of using factor, use existing multi-class membership indictors
###########################################################################################################
# Create list with what records are in the validation set for each (overlapping) CV-fold
###########################################################################################################
new_cv_splits <- dplyr::select(adat, row_id, DrugKey, indicationkey) %>%
left_join(read_csv("/files/new_cv_splits.csv"), by=c("DrugKey", "indicationkey")) %>%
dplyr::select(foldid, set, row_id) %>%
arrange(foldid, row_id)
cv_index = list()
for (fi in sort(unique(new_cv_splits$foldid))){ #1:5){
cv_index[[fi]] = (1:length(filter(new_cv_splits, foldid==fi)$set))[filter(new_cv_splits, foldid==fi)$set=="val"]
}
# Define function that fits xgboost, does predictions and calculates actual target loss
# based on taking mean or min of predicted trial-level probabilities (we will average more cleverly, but this is a good proxy)
call_xgbcv <- function(){
# Fit xgboost with custom cross-valdiation
xc1 <- xgb.cv( data = data.matrix(traindat),
label=adat$outcome,
weight = adat$casewgt2, # Case wgts that down weight 2008 to 2011 proportional to how much the success rate is too high compared to 2012+
params = params,
nrounds = 10000,
folds=cv_index,
metrics = "logloss",
showsd = T,
print_every_n = 100,
early_stopping_rounds = 20,
maximize = F,
callbacks = list(cb.cv.predict(save_models = TRUE)))
# Get cross-validation prediction results,
# aggregate predictions for a project across the trials (min or mean of probabilities),
# calcuilate logLoss on this basis
cv_results = tibble(fold=1:length(cv_index)) %>%
mutate(res=map(fold, function(x) filter(adat, !is.na(outcome))[cv_index[[x]], c("predgroup", "outcome")] %>%
bind_cols( tibble( pred = predict(xc1$models[[x]], newdata=data.matrix(traindat[cv_index[[x]],])) ) ) )) %>%
unnest(res) %>%
group_by(fold,predgroup) %>%
summarize(n=n(),
outcome = max(outcome),
minpred=min(pred),
meanpred=mean(pred),
loglossmin = -( log(minpred)*outcome + log(1-minpred)*(1-outcome) ) * n,
loglossmean = -( log(meanpred)*outcome + log(1-meanpred)*(1-outcome) ) * n ) %>%
ungroup() %>%
group_by(fold) %>%
summarize(loglossmin = sum(loglossmin) / sum(n),
loglossmean = sum(loglossmean) / sum(n)) %>%
ungroup()
# Summarize across folds (note that SD would not make so much sense, because of differing fold sizes)
cv_results %>%
summarize(loglossmin=mean(loglossmin),
loglossmean=mean(loglossmean)) %>%
mutate(fold=0) %>%
bind_rows(cv_results) %>%
bind_rows(cv_results %>%
summarize(loglossmin=mean(ifelse(fold>=22, loglossmin, NA_real_), na.rm=T),
loglossmean=mean(ifelse(fold>=22, loglossmean, NA_real_), na.rm=T)) %>%
mutate(fold=-1))
}
######################################## Start actual xgboost training here ######################################
# Strategy: Follow basic approach for creating a sensible, if not totally optimal xgboost model
# by choosing sensible defaults and then optimizing first the parameters that depend less on others: first max_depth
# We do this with a relatively high learning rate (eta=0.1)
experiments = list()
experimentid = 0
params = list(booster = "gbtree",
objective = "binary:logistic",
eta=0.1,
gamma=0,
max_depth=10,
min_child_weight=4,
subsample=1.0,
colsample_bytree=0.3)
for (current_depth in 3:11){
print(paste("current depth ", current_depth))
experimentid = experimentid + 1
params$max_depth = current_depth
experiments[[experimentid]] = call_xgbcv()
}
res1 <- tibble(current_depth = 3:11,
exid = 1:experimentid) %>%
mutate(res = map(exid, function(x) experiments[[x]])) %>%
unnest(res)
params$max_depth = filter(res1, fold==0)$current_depth[ which.min(filter(res1, fold==0)$loglossmean) ] #6
#### Now optimize subsample
experiments = list()
experimentid = 0
for (current_subsample in seq(0.1,1,0.05)){
experimentid = experimentid + 1
params$subsample = current_subsample
experiments[[experimentid]] = call_xgbcv()
}
res2 <- tibble(subsample = seq(0.1,1,0.05),
exid = 1:experimentid) %>%
mutate(res = map(exid, function(x) experiments[[x]])) %>%
unnest(res)
params$subsample = filter(res2, fold==0)$subsample[ which.min(filter(res2, fold==0)$loglossmean) ]
#### Now optimize min_child_weight
experiments = list()
experimentid = 0
for (current_min_child_weight in seq(0.5,10,0.5)){
experimentid = experimentid + 1
params$min_child_weight = current_min_child_weight
experiments[[experimentid]] = call_xgbcv()
}
res3 <- tibble(min_child_weight = seq(0.5,10,0.5),
exid = 1:experimentid) %>%
mutate(res = map(exid, function(x) experiments[[x]])) %>%
unnest(res)
params$min_child_weight = filter(res3, fold==0)$min_child_weight[ which.min(filter(res3, fold==0)$loglossmean) ]
#### Now optimize current_colsample_bytree
experiments = list()
experimentid = 0
for (current_colsample_bytree in seq(0.05,1,0.05)){
experimentid = experimentid + 1
params$colsample_bytree = current_colsample_bytree
experiments[[experimentid]] = call_xgbcv()
}
res4 <- tibble(colsample_bytree = seq(0.05,1,0.05),
exid = 1:experimentid) %>%
mutate(res = map(exid, function(x) experiments[[x]])) %>%
unnest(res)
# res4 <- tibble(colsample_bytree = seq(0.05,0.95,0.05),
# exid = 1:experimentid) %>%
# mutate(res = map(exid, function(x) experiments[[x]])) %>%
# unnest(res)
params$colsample_bytree = filter(res4, fold==0)$colsample_bytree[ which.min(filter(res4, fold==0)$loglossmean) ]
# MAIN CHOICE: Limit to 2007 + casewgts2
# $booster
# [1] "gbtree"
#
# $objective
# [1] "binary:logistic"
#
# $eta
# [1] 0.05
#
# $gamma
# [1] 0
#
# $max_depth
# [1] 8 # 5 could also be quite good
#
# $min_child_weight
# [1] 4 # Could also go as high as 8
#
# $subsample
# [1] 1 # Could also do 0.7 or so
#
# $colsample_bytree
# [1] 0.1 # Could be as high as 0.2 or 0.25
# Another attempt (discarded) was all Phase 2 data, no case weights:
# $booster
# [1] "gbtree"
#
# $objective
# [1] "binary:logistic"
#
# $eta
# [1] 0.05
#
# $gamma
# [1] 0
#
# $max_depth (5 may also be good)
# [1] 6
#
# $min_child_weight (could however go as high as, say, 6 to 8)
# [1] 3
#
# $subsample (could also do 0.5, but 0.85 seems okay)
# [1] 0.85
#
# $colsample_bytree
# [1] 0.15
##################################################################
# Now switch to a lower learning rate (eta=0.05) to find a
# good number of rounds to use when refitting with the whole data
##################################################################
params$eta = 0.05
fin_train = xgb.cv( data = data.matrix(traindat),
label=adat$outcome,
weight = adat$casewgt2,
params = params,
nrounds = 10000,
folds=cv_index,
metrics = "logloss",
showsd = T,
print_every_n = 10,
early_stopping_rounds = 20,
maximize = F,
callbacks = list(cb.cv.predict(save_models = TRUE)))
# fin_train : best iteration 738, add 10% so 810
# Plots to check that iteration number is not so critical
fin_train$evaluation_log %>%
filter(iter>400) %>%
ggplot(aes(x=iter, y=test_logloss_mean)) +
geom_point() +
#geom_errorbar() +
geom_line() +
scale_y_log10()
fin_train$evaluation_log %>% as_tibble() %>%
filter(iter>600) %>%
ggplot(aes(x=iter, y=train_logloss_mean)) + geom_line(col="blue") +
geom_line(aes(y=test_logloss_mean), col="red")
##################################################
# Train a final model
##################################################
main_model = xgboost( data = data.matrix(traindat),
label = adat$outcome,
weight = adat$casewgt2,
params = params,
nrounds = 810,
metrics = "logloss",
print_every_n = 40,
maximize = F)
# write_rds(main_model,
# "/home/desktop1/Documents/holzhbj1/novartis-dsai-challenge-starter-kit/xgb_trials2_7jan2020.rds",
# compress = "bz2")
######################################################
# Now look into how we average the predictions that
# are currently by trial.
######################################################
# Create dataset for optimal averaging of trial predictions based on validation-fold predictions.
# It is very critical to respect that the same project must either
# always be in training or in validaiton, toherwise we will get overfitting.
foravging = tibble(fold=1:length(cv_index)) %>%
mutate(res=map(fold, function(x) filter(adat, !is.na(outcome))[cv_index[[x]], c("predgroup", "outcome")] %>%
bind_cols( tibble( pred = predict(fin_train$models[[x]], newdata=data.matrix(traindat[cv_index[[x]],])) ) ) )) %>%
unnest(res) %>%
group_by(fold,predgroup) %>%
summarize(n=n(),
logn=log(n),
outcome = max(outcome),
minpred=min(pred),
minlogit = min( log(pred) - log(1-pred)),
meanpred=mean(pred),
meanlogit = mean( log(pred) - log(1-pred)),
maxpred=max(pred),
maxlogit = max( log(pred) - log(1-pred)),
sd_pred = ifelse(n==1, 0, sd(pred)),
sd_logit = ifelse(n==1, 0, sd( log(pred) - log(1-pred)))) %>%
ungroup() %>%
mutate(avgfold = sample(x=1:10, size=n(), replace=T)) %>% # Hand-specifying folds is important, don't want a project in multiple folds
group_by(predgroup) %>%
mutate(avgfold = first(avgfold)) %>%
ungroup()
#write_rds(foravging, "/home/desktop1/Documents/holzhbj1/for_xgboost_averaging_7jan2020.rds", compress = "bz2")
#foravging <- read_rds("/home/desktop1/Documents/holzhbj1/for_xgboost_averaging_7jan2020.rds")
library(glmnet)
library(doParallel)
# This seems like a decent model to use for averaging min, max and mean predicted probability in a project across studies.
# I explored some other thing, but it seems woryrying that I might be overfitting noise in the cross-validation,
# if I add too many other things to the model (like untransformed probabilities, number of studies, other project level features),
# and any improvement seemed minimal. Thus, better to keep it simple.
# Relaxed-ridge regression makes sense, because I feel like everything should be in the model (possibly even slightly underfit)
# and should implicitly do something like Platt scaling (which is actually super-convenient, because we wish to optimize logLoss,
# not accuracy or F1-score and xgboost is sometimes not well calibrated otherwise).
cl <- makePSOCKcluster(12)
registerDoParallel(cl)
set.seed(2020)
elnet3 <- cv.glmnet(y=foravging$outcome,
x=as.matrix(foravging %>% dplyr::select(minlogit, meanlogit, maxlogit)),
family = "binomial",
nfolds=10,
foldid=foravging$avgfold, # This is the super important bit (forgot it at first) - keep a whole project always in train or validation fold
alpha=0,
gamma=seq(0, 1, 0.05),
type.measure = "deviance",
relax = T,
intercept=F,
parallel=TRUE,
keep=F)
stopCluster(cl)
# write_rds(elnet3,
# "/home/desktop1/Documents/holzhbj1/novartis-dsai-challenge-starter-kit/xgboost_meta_avg2_7jan2020.rds",
# compress="bz2")
# Measure: Binomial Deviance
#
# Gamma Lambda Measure SE Nonzero
# min 0.00 0.0001 0.04185 0.002340 2
# 1se 0.15 0.4233 0.04408 0.002283 2
# cl <- makePSOCKcluster(12)
# registerDoParallel(cl)
# elnet1 <- cv.glmnet(y=foravging$outcome,
# x=as.matrix(foravging %>% dplyr::select(logn, minpred, minlogit, meanpred, meanlogit, maxpred, maxlogit, sd_pred, sd_logit)),
# nfolds=10,
# foldid=foravging$avgfold,
# family = "binomial",
# alpha=0.5,
# gamma=c(0, 1, 0.1),
# type.measure = "deviance",
# relax = T,
# parallel=TRUE)
# stopCluster(cl)
# # This is how one would access the validation fold predicted values, if one wanted to do anything further (e.g. stacking).
#foravging %>% mutate(cvpred=elnet3$fit.preval$`g:0.15`[,2])
# # Some further exploration of the optimization of xgboost hyper-parameters
# res5 = tibble(fold=1:length(cv_index)) %>%
# mutate(res=map(fold, function(x) filter(adat, !is.na(outcome))[cv_index[[x]], c("predgroup", "outcome")] %>%
# bind_cols( tibble( pred = predict(fin_train$models[[x]], newdata=data.matrix(traindat[cv_index[[x]],])) ) ) )) %>%
# unnest(res) %>%
# group_by(fold,predgroup) %>%
# summarize(n=n(),
# outcome = max(outcome),
# minpred=min(pred),
# meanpred=mean(pred),
# loglossmin = -( log(minpred)*outcome + log(1-minpred)*(1-outcome) ) * n,
# loglossmean = -( log(meanpred)*outcome + log(1-meanpred)*(1-outcome) ) * n ) %>%
# ungroup() %>%
# group_by(fold) %>%
# summarize(loglossmin = sum(loglossmin) / sum(n),
# loglossmean = sum(loglossmean) / sum(n)) %>%
# ungroup()
#
# res5 <- res5 %>%
# summarize(loglossmin=mean(loglossmin),
# loglossmean=mean(loglossmean)) %>%
# mutate(fold=0) %>%
# bind_rows(res5) %>%
# bind_rows(res5 %>%
# summarize(loglossmin=mean(ifelse(fold>=22, loglossmin, NA_real_), na.rm=T),
# loglossmean=mean(ifelse(fold>=22, loglossmean, NA_real_), na.rm=T)) %>%
# mutate(fold=-1))
#
# print(params)
#write_csv(res5, "/home/desktop1/Documents/holzhbj1/xgb_cv_2019_12_29_1.csv")
# #write_rds(list(res1, res2, res3), "/home/desktop1/Documents/holzhbj1/xgb_cv_2019_12_29_res1_3.rds", compress = "bz2")
# # reslist <- read_rds("/home/desktop1/Documents/holzhbj1/xgb_cv_2019_12_29_res1_3.rds")
# # res1 <- reslist[[1]]
# # res2 <- reslist[[2]]
# # res3 <- reslist[[3]]
# res1 %>% #filter(fold %in% c(-1,0)) %>%
# ggplot(aes(x=current_depth, y=loglossmean, col=as_factor(fold))) +
# geom_line() + facet_wrap(~as_factor(fold), scale="free")
# res2 %>% #filter(fold %in% c(-1,0)) %>%
# ggplot(aes(x=subsample, y=loglossmean, col=as_factor(fold))) +
# geom_line() + facet_wrap(~as_factor(fold), scale="free")
# res3 %>% #filter(fold %in% c(-1,0)) %>%
# ggplot(aes(x=min_child_weight, y=loglossmean, col=as_factor(fold))) +
# geom_line() + facet_wrap(~as_factor(fold), scale="free")
# res4 %>% #filter(fold %in% c(-1,0)) %>%
# ggplot(aes(x=colsample_bytree, y=loglossmean, col=as_factor(fold))) +
# geom_line() + facet_wrap(~as_factor(fold), scale="free")
# write_rds(experiments, "/home/desktop1/Documents/holzhbj1/xgb_cv_2019_12_29_experi.rds", compress = "bz2")
# experiments = read_rds("/home/desktop1/Documents/holzhbj1/xgb_cv_2019_12_29_experi.rds")
#write_rds(main_model, "/home/desktop1/Documents/holzhbj1/xgb_cv_2019_12_29.rds", compress = "bz2")
# main_model <- read_rds("/home/desktop1/Documents/holzhbj1/xgb_cv_2019_12_29.rds")
############################################################################################
################################ Model interpretation stuff ################################
############################################################################################
# impmatrix <- xgb.importance(colnames(traindat), model = main_model)
#
# impmatrix[ (impmatrix$Importance/max(impmatrix$Importance)>0.05), ] %>%
# xgb.plot.importance(., rel_to_first=T, xlab="Relative importance")
#
# library(iml)
#
# mypredict = function(model, newdata){
# predict(model, newdata=data.matrix(newdata))
# }
# predictor = Predictor$new(model = main_model, data=traindat, y=adat$outcome, predict=mypredict)
#
# imp = FeatureImp$new(predictor, loss = "logLoss")
# plot(imp)
#
# ale = FeatureEffect$new(predictor, feature = "rel_ph2_size_ta")
# ale$plot() + theme_bw(base_size=18) + geom_hline(yintercept=0) + ylab("Accumulated local effects") + ylab("Relative size (for TA) of Ph2")
# ale = FeatureEffect$new(predictor, feature = "rel_ph2_size_dis")
# ale$plot() + theme_bw(base_size=18) + geom_hline(yintercept=0) + ylab("Accumulated local effects") + ylab("Relative size (for disease type) of Ph2")
#
# tree = TreeSurrogate$new(predictor, maxdepth = 2)
# plot(tree)
# #predict(tree, newdata = tibble(rel_ph2_size_ta=1, dtmeanclu50 = 0, dtmeancll50=0))
#
#
#
# # serelaxin: 5300 5301 5302 5303 5304
# shapley = Shapley$new(predictor, x.interest = traindat[5300,])
# shapley$plot()
#
# shapley$results %>%
# filter(abs(phi)>1e-02) %>%
# arrange(desc(phi)) %>%
# mutate(color = 1*(phi>0)) %>%
# ggplot(aes(x=phi, y=feature, col=as_factor(color))) +
# geom_vline(xintercept=0) +
# geom_point() + theme_bw(base_size=18) + theme(legend.position="none")
#
# #
# # shapley = Shapley$new(predictor, x.interest = X[1,])
# # shapley$plot()