forked from confluentinc/librdkafka
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsnappy.c
1608 lines (1463 loc) · 44.3 KB
/
snappy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* C port of the snappy compressor from Google.
* This is a very fast compressor with comparable compression to lzo.
* Works best on 64bit little-endian, but should be good on others too.
* Ported by Andi Kleen.
* Uptodate with snappy 1.1.0
*/
/*
* Copyright 2005 Google Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef __KERNEL__
#include <linux/kernel.h>
#ifdef SG
#include <linux/uio.h>
#endif
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/snappy.h>
#include <linux/vmalloc.h>
#include <asm/unaligned.h>
#else
#include "snappy.h"
#include "snappy_compat.h"
#endif
#define CRASH_UNLESS(x) BUG_ON(!(x))
#define CHECK(cond) CRASH_UNLESS(cond)
#define CHECK_LE(a, b) CRASH_UNLESS((a) <= (b))
#define CHECK_GE(a, b) CRASH_UNLESS((a) >= (b))
#define CHECK_EQ(a, b) CRASH_UNLESS((a) == (b))
#define CHECK_NE(a, b) CRASH_UNLESS((a) != (b))
#define CHECK_LT(a, b) CRASH_UNLESS((a) < (b))
#define CHECK_GT(a, b) CRASH_UNLESS((a) > (b))
#define UNALIGNED_LOAD16(_p) get_unaligned((u16 *)(_p))
#define UNALIGNED_LOAD32(_p) get_unaligned((u32 *)(_p))
#define UNALIGNED_LOAD64(_p) get_unaligned64((u64 *)(_p))
#define UNALIGNED_STORE16(_p, _val) put_unaligned(_val, (u16 *)(_p))
#define UNALIGNED_STORE32(_p, _val) put_unaligned(_val, (u32 *)(_p))
#define UNALIGNED_STORE64(_p, _val) put_unaligned64(_val, (u64 *)(_p))
/*
* This can be more efficient than UNALIGNED_LOAD64 + UNALIGNED_STORE64
* on some platforms, in particular ARM.
*/
static inline void unaligned_copy64(const void *src, void *dst)
{
if (sizeof(void *) == 8) {
UNALIGNED_STORE64(dst, UNALIGNED_LOAD64(src));
} else {
const char *src_char = (const char *)(src);
char *dst_char = (char *)(dst);
UNALIGNED_STORE32(dst_char, UNALIGNED_LOAD32(src_char));
UNALIGNED_STORE32(dst_char + 4, UNALIGNED_LOAD32(src_char + 4));
}
}
#ifdef NDEBUG
#define DCHECK(cond) do {} while(0)
#define DCHECK_LE(a, b) do {} while(0)
#define DCHECK_GE(a, b) do {} while(0)
#define DCHECK_EQ(a, b) do {} while(0)
#define DCHECK_NE(a, b) do {} while(0)
#define DCHECK_LT(a, b) do {} while(0)
#define DCHECK_GT(a, b) do {} while(0)
#else
#define DCHECK(cond) CHECK(cond)
#define DCHECK_LE(a, b) CHECK_LE(a, b)
#define DCHECK_GE(a, b) CHECK_GE(a, b)
#define DCHECK_EQ(a, b) CHECK_EQ(a, b)
#define DCHECK_NE(a, b) CHECK_NE(a, b)
#define DCHECK_LT(a, b) CHECK_LT(a, b)
#define DCHECK_GT(a, b) CHECK_GT(a, b)
#endif
static inline bool is_little_endian(void)
{
#ifdef __LITTLE_ENDIAN__
return true;
#endif
return false;
}
static inline int log2_floor(u32 n)
{
return n == 0 ? -1 : 31 ^ __builtin_clz(n);
}
static inline __attribute__((unused)) int find_lsb_set_non_zero(u32 n)
{
return __builtin_ctz(n);
}
static inline int find_lsb_set_non_zero64(u64 n)
{
return __builtin_ctzll(n);
}
#define kmax32 5
/*
* Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1].
* Never reads a character at or beyond limit. If a valid/terminated varint32
* was found in the range, stores it in *OUTPUT and returns a pointer just
* past the last byte of the varint32. Else returns NULL. On success,
* "result <= limit".
*/
static inline const char *varint_parse32_with_limit(const char *p,
const char *l,
u32 * OUTPUT)
{
const unsigned char *ptr = (const unsigned char *)(p);
const unsigned char *limit = (const unsigned char *)(l);
u32 b, result;
if (ptr >= limit)
return NULL;
b = *(ptr++);
result = b & 127;
if (b < 128)
goto done;
if (ptr >= limit)
return NULL;
b = *(ptr++);
result |= (b & 127) << 7;
if (b < 128)
goto done;
if (ptr >= limit)
return NULL;
b = *(ptr++);
result |= (b & 127) << 14;
if (b < 128)
goto done;
if (ptr >= limit)
return NULL;
b = *(ptr++);
result |= (b & 127) << 21;
if (b < 128)
goto done;
if (ptr >= limit)
return NULL;
b = *(ptr++);
result |= (b & 127) << 28;
if (b < 16)
goto done;
return NULL; /* Value is too long to be a varint32 */
done:
*OUTPUT = result;
return (const char *)(ptr);
}
/*
* REQUIRES "ptr" points to a buffer of length sufficient to hold "v".
* EFFECTS Encodes "v" into "ptr" and returns a pointer to the
* byte just past the last encoded byte.
*/
static inline char *varint_encode32(char *sptr, u32 v)
{
/* Operate on characters as unsigneds */
unsigned char *ptr = (unsigned char *)(sptr);
static const int B = 128;
if (v < (1 << 7)) {
*(ptr++) = v;
} else if (v < (1 << 14)) {
*(ptr++) = v | B;
*(ptr++) = v >> 7;
} else if (v < (1 << 21)) {
*(ptr++) = v | B;
*(ptr++) = (v >> 7) | B;
*(ptr++) = v >> 14;
} else if (v < (1 << 28)) {
*(ptr++) = v | B;
*(ptr++) = (v >> 7) | B;
*(ptr++) = (v >> 14) | B;
*(ptr++) = v >> 21;
} else {
*(ptr++) = v | B;
*(ptr++) = (v >> 7) | B;
*(ptr++) = (v >> 14) | B;
*(ptr++) = (v >> 21) | B;
*(ptr++) = v >> 28;
}
return (char *)(ptr);
}
#ifdef SG
struct source {
struct iovec *iov;
int iovlen;
int curvec;
int curoff;
size_t total;
};
/* Only valid at beginning when nothing is consumed */
static inline int available(struct source *s)
{
return s->total;
}
static inline const char *peek(struct source *s, size_t *len)
{
if (likely(s->curvec < s->iovlen)) {
struct iovec *iv = &s->iov[s->curvec];
if (s->curoff < iv->iov_len) {
*len = iv->iov_len - s->curoff;
return (char *)iv->iov_base + s->curoff;
}
}
*len = 0;
return NULL;
}
static inline void skip(struct source *s, size_t n)
{
struct iovec *iv = &s->iov[s->curvec];
s->curoff += n;
DCHECK_LE(s->curoff, iv->iov_len);
if (s->curoff >= iv->iov_len && s->curvec + 1 < s->iovlen) {
s->curoff = 0;
s->curvec++;
}
}
struct sink {
struct iovec *iov;
int iovlen;
unsigned curvec;
unsigned curoff;
unsigned written;
};
static inline void append(struct sink *s, const char *data, size_t n)
{
struct iovec *iov = &s->iov[s->curvec];
char *dst = (char *)iov->iov_base + s->curoff;
size_t nlen = min_t(size_t, iov->iov_len - s->curoff, n);
if (data != dst)
memcpy(dst, data, nlen);
s->written += n;
s->curoff += nlen;
while ((n -= nlen) > 0) {
data += nlen;
s->curvec++;
DCHECK_LT(s->curvec, s->iovlen);
iov++;
nlen = min_t(size_t, iov->iov_len, n);
memcpy(iov->iov_base, data, nlen);
s->curoff = nlen;
}
}
static inline void *sink_peek(struct sink *s, size_t n)
{
struct iovec *iov = &s->iov[s->curvec];
if (s->curvec < iov->iov_len && iov->iov_len - s->curoff >= n)
return (char *)iov->iov_base + s->curoff;
return NULL;
}
#else
struct source {
const char *ptr;
size_t left;
};
static inline int available(struct source *s)
{
return s->left;
}
static inline const char *peek(struct source *s, size_t * len)
{
*len = s->left;
return s->ptr;
}
static inline void skip(struct source *s, size_t n)
{
s->left -= n;
s->ptr += n;
}
struct sink {
char *dest;
};
static inline void append(struct sink *s, const char *data, size_t n)
{
if (data != s->dest)
memcpy(s->dest, data, n);
s->dest += n;
}
#define sink_peek(s, n) sink_peek_no_sg(s)
static inline void *sink_peek_no_sg(const struct sink *s)
{
return s->dest;
}
#endif
struct writer {
char *base;
char *op;
char *op_limit;
};
/* Called before decompression */
static inline void writer_set_expected_length(struct writer *w, size_t len)
{
w->op_limit = w->op + len;
}
/* Called after decompression */
static inline bool writer_check_length(struct writer *w)
{
return w->op == w->op_limit;
}
/*
* Copy "len" bytes from "src" to "op", one byte at a time. Used for
* handling COPY operations where the input and output regions may
* overlap. For example, suppose:
* src == "ab"
* op == src + 2
* len == 20
* After IncrementalCopy(src, op, len), the result will have
* eleven copies of "ab"
* ababababababababababab
* Note that this does not match the semantics of either memcpy()
* or memmove().
*/
static inline void incremental_copy(const char *src, char *op, ssize_t len)
{
DCHECK_GT(len, 0);
do {
*op++ = *src++;
} while (--len > 0);
}
/*
* Equivalent to IncrementalCopy except that it can write up to ten extra
* bytes after the end of the copy, and that it is faster.
*
* The main part of this loop is a simple copy of eight bytes at a time until
* we've copied (at least) the requested amount of bytes. However, if op and
* src are less than eight bytes apart (indicating a repeating pattern of
* length < 8), we first need to expand the pattern in order to get the correct
* results. For instance, if the buffer looks like this, with the eight-byte
* <src> and <op> patterns marked as intervals:
*
* abxxxxxxxxxxxx
* [------] src
* [------] op
*
* a single eight-byte copy from <src> to <op> will repeat the pattern once,
* after which we can move <op> two bytes without moving <src>:
*
* ababxxxxxxxxxx
* [------] src
* [------] op
*
* and repeat the exercise until the two no longer overlap.
*
* This allows us to do very well in the special case of one single byte
* repeated many times, without taking a big hit for more general cases.
*
* The worst case of extra writing past the end of the match occurs when
* op - src == 1 and len == 1; the last copy will read from byte positions
* [0..7] and write to [4..11], whereas it was only supposed to write to
* position 1. Thus, ten excess bytes.
*/
#define kmax_increment_copy_overflow 10
static inline void incremental_copy_fast_path(const char *src, char *op,
ssize_t len)
{
while (op - src < 8) {
unaligned_copy64(src, op);
len -= op - src;
op += op - src;
}
while (len > 0) {
unaligned_copy64(src, op);
src += 8;
op += 8;
len -= 8;
}
}
static inline bool writer_append_from_self(struct writer *w, u32 offset,
u32 len)
{
char *const op = w->op;
CHECK_LE(op, w->op_limit);
const u32 space_left = w->op_limit - op;
if (op - w->base <= offset - 1u) /* -1u catches offset==0 */
return false;
if (len <= 16 && offset >= 8 && space_left >= 16) {
/* Fast path, used for the majority (70-80%) of dynamic
* invocations. */
unaligned_copy64(op - offset, op);
unaligned_copy64(op - offset + 8, op + 8);
} else {
if (space_left >= len + kmax_increment_copy_overflow) {
incremental_copy_fast_path(op - offset, op, len);
} else {
if (space_left < len) {
return false;
}
incremental_copy(op - offset, op, len);
}
}
w->op = op + len;
return true;
}
static inline bool writer_append(struct writer *w, const char *ip, u32 len)
{
char *const op = w->op;
CHECK_LE(op, w->op_limit);
const u32 space_left = w->op_limit - op;
if (space_left < len)
return false;
memcpy(op, ip, len);
w->op = op + len;
return true;
}
static inline bool writer_try_fast_append(struct writer *w, const char *ip,
u32 available_bytes, u32 len)
{
char *const op = w->op;
const int space_left = w->op_limit - op;
if (len <= 16 && available_bytes >= 16 && space_left >= 16) {
/* Fast path, used for the majority (~95%) of invocations */
unaligned_copy64(ip, op);
unaligned_copy64(ip + 8, op + 8);
w->op = op + len;
return true;
}
return false;
}
/*
* Any hash function will produce a valid compressed bitstream, but a good
* hash function reduces the number of collisions and thus yields better
* compression for compressible input, and more speed for incompressible
* input. Of course, it doesn't hurt if the hash function is reasonably fast
* either, as it gets called a lot.
*/
static inline u32 hash_bytes(u32 bytes, int shift)
{
u32 kmul = 0x1e35a7bd;
return (bytes * kmul) >> shift;
}
static inline u32 hash(const char *p, int shift)
{
return hash_bytes(UNALIGNED_LOAD32(p), shift);
}
/*
* Compressed data can be defined as:
* compressed := item* literal*
* item := literal* copy
*
* The trailing literal sequence has a space blowup of at most 62/60
* since a literal of length 60 needs one tag byte + one extra byte
* for length information.
*
* Item blowup is trickier to measure. Suppose the "copy" op copies
* 4 bytes of data. Because of a special check in the encoding code,
* we produce a 4-byte copy only if the offset is < 65536. Therefore
* the copy op takes 3 bytes to encode, and this type of item leads
* to at most the 62/60 blowup for representing literals.
*
* Suppose the "copy" op copies 5 bytes of data. If the offset is big
* enough, it will take 5 bytes to encode the copy op. Therefore the
* worst case here is a one-byte literal followed by a five-byte copy.
* I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
*
* This last factor dominates the blowup, so the final estimate is:
*/
size_t snappy_max_compressed_length(size_t source_len)
{
return 32 + source_len + source_len / 6;
}
EXPORT_SYMBOL(snappy_max_compressed_length);
enum {
LITERAL = 0,
COPY_1_BYTE_OFFSET = 1, /* 3 bit length + 3 bits of offset in opcode */
COPY_2_BYTE_OFFSET = 2,
COPY_4_BYTE_OFFSET = 3
};
static inline char *emit_literal(char *op,
const char *literal,
int len, bool allow_fast_path)
{
int n = len - 1; /* Zero-length literals are disallowed */
if (n < 60) {
/* Fits in tag byte */
*op++ = LITERAL | (n << 2);
/*
* The vast majority of copies are below 16 bytes, for which a
* call to memcpy is overkill. This fast path can sometimes
* copy up to 15 bytes too much, but that is okay in the
* main loop, since we have a bit to go on for both sides:
*
* - The input will always have kInputMarginBytes = 15 extra
* available bytes, as long as we're in the main loop, and
* if not, allow_fast_path = false.
* - The output will always have 32 spare bytes (see
* MaxCompressedLength).
*/
if (allow_fast_path && len <= 16) {
unaligned_copy64(literal, op);
unaligned_copy64(literal + 8, op + 8);
return op + len;
}
} else {
/* Encode in upcoming bytes */
char *base = op;
int count = 0;
op++;
while (n > 0) {
*op++ = n & 0xff;
n >>= 8;
count++;
}
DCHECK(count >= 1);
DCHECK(count <= 4);
*base = LITERAL | ((59 + count) << 2);
}
memcpy(op, literal, len);
return op + len;
}
static inline char *emit_copy_less_than64(char *op, int offset, int len)
{
DCHECK_LE(len, 64);
DCHECK_GE(len, 4);
DCHECK_LT(offset, 65536);
if ((len < 12) && (offset < 2048)) {
int len_minus_4 = len - 4;
DCHECK(len_minus_4 < 8); /* Must fit in 3 bits */
*op++ =
COPY_1_BYTE_OFFSET + ((len_minus_4) << 2) + ((offset >> 8)
<< 5);
*op++ = offset & 0xff;
} else {
*op++ = COPY_2_BYTE_OFFSET + ((len - 1) << 2);
put_unaligned_le16(offset, op);
op += 2;
}
return op;
}
static inline char *emit_copy(char *op, int offset, int len)
{
/*
* Emit 64 byte copies but make sure to keep at least four bytes
* reserved
*/
while (len >= 68) {
op = emit_copy_less_than64(op, offset, 64);
len -= 64;
}
/*
* Emit an extra 60 byte copy if have too much data to fit in
* one copy
*/
if (len > 64) {
op = emit_copy_less_than64(op, offset, 60);
len -= 60;
}
/* Emit remainder */
op = emit_copy_less_than64(op, offset, len);
return op;
}
/**
* snappy_uncompressed_length - return length of uncompressed output.
* @start: compressed buffer
* @n: length of compressed buffer.
* @result: Write the length of the uncompressed output here.
*
* Returns true when successfull, otherwise false.
*/
bool snappy_uncompressed_length(const char *start, size_t n, size_t * result)
{
u32 v = 0;
const char *limit = start + n;
if (varint_parse32_with_limit(start, limit, &v) != NULL) {
*result = v;
return true;
} else {
return false;
}
}
EXPORT_SYMBOL(snappy_uncompressed_length);
/*
* The size of a compression block. Note that many parts of the compression
* code assumes that kBlockSize <= 65536; in particular, the hash table
* can only store 16-bit offsets, and EmitCopy() also assumes the offset
* is 65535 bytes or less. Note also that if you change this, it will
* affect the framing format
* Note that there might be older data around that is compressed with larger
* block sizes, so the decompression code should not rely on the
* non-existence of long backreferences.
*/
#define kblock_log 16
#define kblock_size (1 << kblock_log)
/*
* This value could be halfed or quartered to save memory
* at the cost of slightly worse compression.
*/
#define kmax_hash_table_bits 14
#define kmax_hash_table_size (1U << kmax_hash_table_bits)
/*
* Use smaller hash table when input.size() is smaller, since we
* fill the table, incurring O(hash table size) overhead for
* compression, and if the input is short, we won't need that
* many hash table entries anyway.
*/
static u16 *get_hash_table(struct snappy_env *env, size_t input_size,
int *table_size)
{
unsigned htsize = 256;
DCHECK(kmax_hash_table_size >= 256);
while (htsize < kmax_hash_table_size && htsize < input_size)
htsize <<= 1;
CHECK_EQ(0, htsize & (htsize - 1));
CHECK_LE(htsize, kmax_hash_table_size);
u16 *table;
table = env->hash_table;
*table_size = htsize;
memset(table, 0, htsize * sizeof(*table));
return table;
}
/*
* Return the largest n such that
*
* s1[0,n-1] == s2[0,n-1]
* and n <= (s2_limit - s2).
*
* Does not read *s2_limit or beyond.
* Does not read *(s1 + (s2_limit - s2)) or beyond.
* Requires that s2_limit >= s2.
*
* Separate implementation for x86_64, for speed. Uses the fact that
* x86_64 is little endian.
*/
#if defined(__LITTLE_ENDIAN__) && BITS_PER_LONG == 64
static inline int find_match_length(const char *s1,
const char *s2, const char *s2_limit)
{
int matched = 0;
DCHECK_GE(s2_limit, s2);
/*
* Find out how long the match is. We loop over the data 64 bits at a
* time until we find a 64-bit block that doesn't match; then we find
* the first non-matching bit and use that to calculate the total
* length of the match.
*/
while (likely(s2 <= s2_limit - 8)) {
if (unlikely
(UNALIGNED_LOAD64(s2) == UNALIGNED_LOAD64(s1 + matched))) {
s2 += 8;
matched += 8;
} else {
/*
* On current (mid-2008) Opteron models there
* is a 3% more efficient code sequence to
* find the first non-matching byte. However,
* what follows is ~10% better on Intel Core 2
* and newer, and we expect AMD's bsf
* instruction to improve.
*/
u64 x =
UNALIGNED_LOAD64(s2) ^ UNALIGNED_LOAD64(s1 +
matched);
int matching_bits = find_lsb_set_non_zero64(x);
matched += matching_bits >> 3;
return matched;
}
}
while (likely(s2 < s2_limit)) {
if (likely(s1[matched] == *s2)) {
++s2;
++matched;
} else {
return matched;
}
}
return matched;
}
#else
static inline int find_match_length(const char *s1,
const char *s2, const char *s2_limit)
{
/* Implementation based on the x86-64 version, above. */
DCHECK_GE(s2_limit, s2);
int matched = 0;
while (s2 <= s2_limit - 4 &&
UNALIGNED_LOAD32(s2) == UNALIGNED_LOAD32(s1 + matched)) {
s2 += 4;
matched += 4;
}
if (is_little_endian() && s2 <= s2_limit - 4) {
u32 x =
UNALIGNED_LOAD32(s2) ^ UNALIGNED_LOAD32(s1 + matched);
int matching_bits = find_lsb_set_non_zero(x);
matched += matching_bits >> 3;
} else {
while ((s2 < s2_limit) && (s1[matched] == *s2)) {
++s2;
++matched;
}
}
return matched;
}
#endif
/*
* For 0 <= offset <= 4, GetU32AtOffset(GetEightBytesAt(p), offset) will
* equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have
* empirically found that overlapping loads such as
* UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
* are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to u32.
*
* We have different versions for 64- and 32-bit; ideally we would avoid the
* two functions and just inline the UNALIGNED_LOAD64 call into
* GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever
* enough to avoid loading the value multiple times then. For 64-bit, the load
* is done when GetEightBytesAt() is called, whereas for 32-bit, the load is
* done at GetUint32AtOffset() time.
*/
#if BITS_PER_LONG == 64
typedef u64 eight_bytes_reference;
static inline eight_bytes_reference get_eight_bytes_at(const char* ptr)
{
return UNALIGNED_LOAD64(ptr);
}
static inline u32 get_u32_at_offset(u64 v, int offset)
{
DCHECK_GE(offset, 0);
DCHECK_LE(offset, 4);
return v >> (is_little_endian()? 8 * offset : 32 - 8 * offset);
}
#else
typedef const char *eight_bytes_reference;
static inline eight_bytes_reference get_eight_bytes_at(const char* ptr)
{
return ptr;
}
static inline u32 get_u32_at_offset(const char *v, int offset)
{
DCHECK_GE(offset, 0);
DCHECK_LE(offset, 4);
return UNALIGNED_LOAD32(v + offset);
}
#endif
/*
* Flat array compression that does not emit the "uncompressed length"
* prefix. Compresses "input" string to the "*op" buffer.
*
* REQUIRES: "input" is at most "kBlockSize" bytes long.
* REQUIRES: "op" points to an array of memory that is at least
* "MaxCompressedLength(input.size())" in size.
* REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
* REQUIRES: "table_size" is a power of two
*
* Returns an "end" pointer into "op" buffer.
* "end - op" is the compressed size of "input".
*/
static char *compress_fragment(const char *const input,
const size_t input_size,
char *op, u16 * table, const unsigned table_size)
{
/* "ip" is the input pointer, and "op" is the output pointer. */
const char *ip = input;
CHECK_LE(input_size, kblock_size);
CHECK_EQ(table_size & (table_size - 1), 0);
const int shift = 32 - log2_floor(table_size);
DCHECK_EQ(UINT_MAX >> shift, table_size - 1);
const char *ip_end = input + input_size;
const char *baseip = ip;
/*
* Bytes in [next_emit, ip) will be emitted as literal bytes. Or
* [next_emit, ip_end) after the main loop.
*/
const char *next_emit = ip;
const unsigned kinput_margin_bytes = 15;
if (likely(input_size >= kinput_margin_bytes)) {
const char *const ip_limit = input + input_size -
kinput_margin_bytes;
u32 next_hash;
for (next_hash = hash(++ip, shift);;) {
DCHECK_LT(next_emit, ip);
/*
* The body of this loop calls EmitLiteral once and then EmitCopy one or
* more times. (The exception is that when we're close to exhausting
* the input we goto emit_remainder.)
*
* In the first iteration of this loop we're just starting, so
* there's nothing to copy, so calling EmitLiteral once is
* necessary. And we only start a new iteration when the
* current iteration has determined that a call to EmitLiteral will
* precede the next call to EmitCopy (if any).
*
* Step 1: Scan forward in the input looking for a 4-byte-long match.
* If we get close to exhausting the input then goto emit_remainder.
*
* Heuristic match skipping: If 32 bytes are scanned with no matches
* found, start looking only at every other byte. If 32 more bytes are
* scanned, look at every third byte, etc.. When a match is found,
* immediately go back to looking at every byte. This is a small loss
* (~5% performance, ~0.1% density) for lcompressible data due to more
* bookkeeping, but for non-compressible data (such as JPEG) it's a huge
* win since the compressor quickly "realizes" the data is incompressible
* and doesn't bother looking for matches everywhere.
*
* The "skip" variable keeps track of how many bytes there are since the
* last match; dividing it by 32 (ie. right-shifting by five) gives the
* number of bytes to move ahead for each iteration.
*/
u32 skip_bytes = 32;
const char *next_ip = ip;
const char *candidate;
do {
ip = next_ip;
u32 hval = next_hash;
DCHECK_EQ(hval, hash(ip, shift));
u32 bytes_between_hash_lookups = skip_bytes++ >> 5;
next_ip = ip + bytes_between_hash_lookups;
if (unlikely(next_ip > ip_limit)) {
goto emit_remainder;
}
next_hash = hash(next_ip, shift);
candidate = baseip + table[hval];
DCHECK_GE(candidate, baseip);
DCHECK_LT(candidate, ip);
table[hval] = ip - baseip;
} while (likely(UNALIGNED_LOAD32(ip) !=
UNALIGNED_LOAD32(candidate)));
/*
* Step 2: A 4-byte match has been found. We'll later see if more
* than 4 bytes match. But, prior to the match, input
* bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
*/
DCHECK_LE(next_emit + 16, ip_end);
op = emit_literal(op, next_emit, ip - next_emit, true);
/*
* Step 3: Call EmitCopy, and then see if another EmitCopy could
* be our next move. Repeat until we find no match for the
* input immediately after what was consumed by the last EmitCopy call.
*
* If we exit this loop normally then we need to call EmitLiteral next,
* though we don't yet know how big the literal will be. We handle that
* by proceeding to the next iteration of the main loop. We also can exit
* this loop via goto if we get close to exhausting the input.
*/
eight_bytes_reference input_bytes;
u32 candidate_bytes = 0;
do {
/*
* We have a 4-byte match at ip, and no need to emit any
* "literal bytes" prior to ip.
*/
const char *base = ip;
int matched = 4 +
find_match_length(candidate + 4, ip + 4,
ip_end);
ip += matched;
int offset = base - candidate;
DCHECK_EQ(0, memcmp(base, candidate, matched));
op = emit_copy(op, offset, matched);
/*
* We could immediately start working at ip now, but to improve
* compression we first update table[Hash(ip - 1, ...)].
*/
const char *insert_tail = ip - 1;
next_emit = ip;
if (unlikely(ip >= ip_limit)) {
goto emit_remainder;
}
input_bytes = get_eight_bytes_at(insert_tail);
u32 prev_hash =
hash_bytes(get_u32_at_offset
(input_bytes, 0), shift);
table[prev_hash] = ip - baseip - 1;
u32 cur_hash =
hash_bytes(get_u32_at_offset
(input_bytes, 1), shift);
candidate = baseip + table[cur_hash];
candidate_bytes = UNALIGNED_LOAD32(candidate);
table[cur_hash] = ip - baseip;
} while (get_u32_at_offset(input_bytes, 1) ==
candidate_bytes);
next_hash =
hash_bytes(get_u32_at_offset(input_bytes, 2),
shift);
++ip;
}
}
emit_remainder:
/* Emit the remaining bytes as a literal */
if (next_emit < ip_end)
op = emit_literal(op, next_emit, ip_end - next_emit, false);
return op;
}
/*
* -----------------------------------------------------------------------
* Lookup table for decompression code. Generated by ComputeTable() below.
* -----------------------------------------------------------------------
*/
/* Mapping from i in range [0,4] to a mask to extract the bottom 8*i bits */