-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvocab_tool.py
299 lines (264 loc) · 9.18 KB
/
vocab_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import argparse
import string
from collections import OrderedDict
import chinese_english_lookup as cel
from ckip_transformers import nlp
class Config:
model = "bert-base"
device = 0
allow_no_definition = False
hsk2_exclude = ()
hsk3_exclude = ()
hsk2_min = 5
hsk2_max = 99
hsk3_min = 3
hsk3_max = 999
hsk2_min_char = 0
hsk3_min_char = 0
length_min = 2
length_max = 5
count_min = 1
count_max = 999999
try_alternatives = 4
skip_sequences = ()
def __init__(self, args):
for k in (
"model",
"device",
"hsk2_min",
"hsk2_max",
"hsk3_min",
"hsk3_max",
"hsk2_min_char",
"hsk3_min_char",
"length_min",
"length_max",
"count_min",
"count_max",
"try_alternatives",
):
setattr(self, k, getattr(args, k))
if args.hsk2_exclude:
self.hsk2_exclude = set(args.hsk2_exclude)
if args.hsk3_exclude:
self.hsk3_exclude = set(args.hsk3_exclude)
self.skip_sequences = set() if not args.skip else set(args.skip)
if args.skip_file:
for fn in args.skip_file:
with open(fn, "r") as fp:
lines = (line for line in (l_.strip() for l_ in fp) if line)
self.skip_sequences |= set(lines)
print(args)
CONFIG = None
PUNCT_CHARS = string.punctuation + "。:?!,……‘`“”"
class HSK3(cel.HSK3):
def get_level_for_word(self, word):
idx = self.word_to_category_map.get(word.strip())
return idx + 1 if idx is not None else None
HSK3 = HSK3()
HSK2 = cel.HSK2()
CELDICT = cel.Dictionary()
def find_subseq(needle, haystack):
nlen, hlen = len(needle), len(haystack)
result = []
for idx in range(hlen):
plen = 0
for subidx in range(idx, hlen):
chunk = haystack[subidx]
clen = len(chunk)
if needle[plen : plen + clen] != chunk:
break
plen += clen
if plen == nlen:
result.append((idx, (subidx - idx) + 1))
break
return result
def is_all_punct(s):
return all(c in PUNCT_CHARS for c in s)
def filter_skips(segs):
while True:
found = 0
for skipseq in CONFIG.skip_sequences:
skips = find_subseq(skipseq, segs)
if not skips:
continue
found += 1
offs = 0
for skidx_, sslen in skips:
skidx = skidx_ - offs
segs = (*segs[:skidx], *segs[skidx + sslen :])
offs += sslen
if found == 0:
break
return segs
def get_segs(text):
driver = nlp.CkipWordSegmenter(model=CONFIG.model, device=CONFIG.device)
result = []
segmented = driver((text,), use_delim=True)
for chunk in segmented:
if not chunk:
continue
filtered = tuple(
w
for w in (w.strip() for w in chunk)
if w and not is_all_punct(w) and not w.isascii()
)
filtered = filter_skips(filtered)
if not filtered:
continue
result.append(filtered)
return result
def build_counts(segslist):
result = OrderedDict()
len_min, try_alts = CONFIG.length_min, CONFIG.try_alternatives
skip_seqs = CONFIG.skip_sequences
flattened = tuple(w for ws in segslist for w in ws)
for idx in range(len(flattened)):
chunk = "".join(flattened[idx : idx + try_alts])
alts = {flattened[idx]}
for altlen in range(CONFIG.length_min, min(len(chunk), CONFIG.length_max)):
curralt = chunk[:altlen]
if len(curralt) < len_min or curralt in skip_seqs:
continue
alts.add(curralt)
for widx, w in enumerate(alts):
if len(w) < len_min:
continue
entry = result.get(w)
if entry is None:
entry = (
1,
(
HSK2.get_level_for_word(w) or 0,
HSK3.get_level_for_word(w) or 0,
CELDICT.lookup(w),
),
)
if widx == 0 and entry[1] == (None, None, None):
continue
else:
entry = (entry[0] + 1, entry[1])
result[w] = entry
return result
CHAR_CACHE = {}
def check_characters(w):
if CONFIG.hsk2_min_char < 1 and CONFIG.hsk3_min_char < 1:
return True
h2_ok, h3_ok = False, False
for c in w:
entry = CHAR_CACHE.get(w)
if entry is None:
entry = (HSK2.get_level_for_word(c) or 0, HSK3.get_level_for_word(c) or 0)
CHAR_CACHE[w] = entry
h2_ok = h2_ok or entry[0] == 0 or entry[0] >= CONFIG.hsk2_min_char
h3_ok = h3_ok or entry[1] == 0 or entry[1] >= CONFIG.hsk3_min_char
if h2_ok and h3_ok:
return True
return False
def filter_counts(counts):
h2_min, h2_max = CONFIG.hsk2_min, CONFIG.hsk2_max
h3_min, h3_max = CONFIG.hsk3_min, CONFIG.hsk3_max
h2_exclude, h3_exclude = CONFIG.hsk2_exclude, CONFIG.hsk3_exclude
len_min, len_max = CONFIG.length_min, CONFIG.length_max
result = []
for w, (count, (h2, h3, definition)) in tuple(counts.items()):
if (
(definition is None and not CONFIG.allow_no_definition)
or (h2 in h2_exclude or h3 in h3_exclude)
or (h2 > 0 and (h2 < h2_min or h2 > h2_max))
or (h3 > 0 and (h3 < h3_min or h3 > h3_max))
or (len(w) < len_min or len(w) > len_max)
or (count < CONFIG.count_min or count > CONFIG.count_max)
or not check_characters(w)
):
continue
result.append((w, count, h2, h3, definition))
result.sort(key=lambda e: (e[1], e[3], e[2]), reverse=True)
return result
def pad(s, pad_to):
return s + (" " * (pad_to - len(s) * 2))
def go(fn):
text = open(fn, "r").read().strip()
segs = get_segs(text)
counts = build_counts(segs)
fcounts = filter_counts(counts)
pad_to = CONFIG.length_max * 2
for w, count, h2l, h3l, definition in fcounts:
wpadded = pad(w, pad_to)
def2 = str(definition).replace("\n", " | ")
print(f"{count:>4}: {wpadded} -- {h2l:>2}, {h3l:>2}, {def2}")
def main():
global CONFIG
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Chinese Vocab Tool",
)
parser.add_argument("input", type=str, help="Input file")
parser.add_argument(
"--model", type=str, default="bert-base", help="Segmenter model name"
)
parser.add_argument(
"--device", type=int, default=0, help="Inference device (use -1 for CPU)"
)
parser.add_argument(
"--hsk2-exclude",
type=int,
action="append",
help="Exclude HSK 2 levels (may be specified multiple times)",
)
parser.add_argument(
"--hsk3-exclude",
type=int,
action="append",
help="Exclude HSK 3 levels (may be specified multiple times)",
)
parser.add_argument("--hsk2-min", type=int, default=1, help="Minimum HSK 2 level")
parser.add_argument("--hsk2-max", type=int, default=9, help="Maximum HSK 2 level")
parser.add_argument("--hsk3-min", type=int, default=1, help="Minimum HSK 3 level")
parser.add_argument("--hsk3-max", type=int, default=9, help="Maximum HSK 3 level")
parser.add_argument(
"--hsk2-min-char",
type=int,
default=0,
help="Requires at least one character in a word to be greater or equal to the minimum level (0 disables)",
)
parser.add_argument(
"--hsk3-min-char",
type=int,
default=0,
help="Requires at least one character in a word to be greater or equal to the minimum level (0 disables)",
)
parser.add_argument(
"--allow-no-definition",
action="store_true",
help="Include entries with no CEDICT definition",
)
parser.add_argument("--length-min", type=int, default=2, help="Minimum word length")
parser.add_argument("--length-max", type=int, default=5, help="Maximum word length")
parser.add_argument("--count-min", type=int, default=1, help="Minimum occurences")
parser.add_argument(
"--count-max", type=int, default=9999999, help="Maximum occurences"
)
parser.add_argument(
"--skip",
type=str,
action="append",
help="Skip a word (may be specified multiple times)",
)
parser.add_argument(
"--skip-file",
type=str,
action="append",
help="Skip all words in a file (may be specified multiple times, file format should be one word per line)",
)
parser.add_argument(
"--try-alternatives",
type=int,
default=5,
help="Also try to look up prefixes of the segmented words up to length-max, will combine segments up to the specified length",
)
args = parser.parse_args()
CONFIG = Config(args)
go(args.input)
if __name__ == "__main__":
main()