Skip to content

Commit

Permalink
stub crt crap
Browse files Browse the repository at this point in the history
  • Loading branch information
redthing1 committed Nov 13, 2023
1 parent 9a6884b commit 3320f53
Show file tree
Hide file tree
Showing 7 changed files with 1,923 additions and 13 deletions.
388 changes: 388 additions & 0 deletions demo/content/shader/crt-geom.cg
Original file line number Diff line number Diff line change
@@ -0,0 +1,388 @@
#pragma parameter CRTgamma "CRTGeom Target Gamma" 2.4 0.1 5.0 0.1
#pragma parameter monitorgamma "CRTGeom Monitor Gamma" 2.2 0.1 5.0 0.1
#pragma parameter d "CRTGeom Distance" 1.5 0.1 3.0 0.1
#pragma parameter CURVATURE "CRTGeom Curvature Toggle" 1.0 0.0 1.0 1.0
#pragma parameter R "CRTGeom Curvature Radius" 2.0 0.1 10.0 0.1
#pragma parameter cornersize "CRTGeom Corner Size" 0.03 0.001 1.0 0.005
#pragma parameter cornersmooth "CRTGeom Corner Smoothness" 1000.0 80.0 2000.0 100.0
#pragma parameter x_tilt "CRTGeom Horizontal Tilt" 0.0 -0.5 0.5 0.05
#pragma parameter y_tilt "CRTGeom Vertical Tilt" 0.0 -0.5 0.5 0.05
#pragma parameter overscan_x "CRTGeom Horiz. Overscan %" 100.0 -125.0 125.0 1.0
#pragma parameter overscan_y "CRTGeom Vert. Overscan %" 100.0 -125.0 125.0 1.0
#pragma parameter DOTMASK "CRTGeom Dot Mask Toggle" 0.3 0.0 0.3 0.3
#pragma parameter SHARPER "CRTGeom Sharpness" 1.0 1.0 3.0 1.0
#pragma parameter scanline_weight "CRTGeom Scanline Weight" 0.3 0.1 0.5 0.01
#pragma parameter lum "CRTGeom Luminance Boost" 0.0 0.0 1.0 0.01
#pragma parameter interlace_toggle "CRTGeom Interlacing" 1.0 1.0 5.0 4.0

#ifdef PARAMETER_UNIFORM
uniform float CRTgamma;
uniform float monitorgamma;
uniform float d;
uniform float CURVATURE;
uniform float R;
uniform float cornersize;
uniform float cornersmooth;
uniform float x_tilt;
uniform float y_tilt;
uniform float overscan_x;
uniform float overscan_y;
uniform float DOTMASK;
uniform float SHARPER;
uniform float scanline_weight;
uniform float lum;
uniform float interlace_toggle;

#else
#define CRTgamma 2.4
#define monitorgamma 2.2
#define d 1.5
#define CURVATURE 1.0
#define R 2.0
#define cornersize 0.03
#define cornersmooth 1000.0
#define x_tilt 0.0
#define y_tilt 0.0
#define overscan_x 100.0
#define overscan_y 100.0
#define DOTMASK 0.3
#define SHARPER 1.0
#define scanline_weight 0.3
#define lum 0.0
#define interlace_toggle 1.0

#endif
// END PARAMETERS //

/* COMPATIBILITY
- HLSL compilers
- Cg compilers
- FX11 compilers
*/

#define mod(x,y) (x - y * trunc(x/y))

/*
CRT-interlaced

Copyright (C) 2010-2012 cgwg, Themaister and DOLLS

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.

(cgwg gave their consent to have the original version of this shader
distributed under the GPL in this message:

http://board.byuu.org/viewtopic.php?p=26075#p26075

"Feel free to distribute my shaders under the GPL. After all, the
barrel distortion code was taken from the Curvature shader, which is
under the GPL."
)
This shader variant is pre-configured with screen curvature
*/

#include "../../compat_includes.inc"
uniform COMPAT_Texture2D(decal) : TEXUNIT0;
uniform float4x4 modelViewProj;

// Comment the next line to disable interpolation in linear gamma (and
// gain speed).
#define LINEAR_PROCESSING

// Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature
#define OVERSAMPLE

// Use the older, purely gaussian beam profile; uncomment for speed
//#define USEGAUSSIAN

// Use interlacing detection; may interfere with other shaders if combined
#define INTERLACED

// Enable Dot-mask emulation:
// Output pixels are alternately tinted green and magenta.
// #define DOTMASK

// Macros.
#define FIX(c) max(abs(c), 1e-5);
#define PI 3.141592653589

#ifdef LINEAR_PROCESSING
# define TEX2D(c) pow(COMPAT_SamplePoint(s0, (c)), float4(CRTgamma,CRTgamma,CRTgamma,CRTgamma))
#else
# define TEX2D(c) COMPAT_SamplePoint(s0, (c))
#endif

// aspect ratio
static float2 aspect = float2(1.0, 0.75);


float intersect(float2 xy, float4 sin_cos_angle)
{
float A = dot(xy,xy)+d*d;
float B = 2.0*(R*(dot(xy,sin_cos_angle.xy)-d*sin_cos_angle.zw.x*sin_cos_angle.zw.y)-d*d);
float C = d*d + 2.0*R*d*sin_cos_angle.zw.x*sin_cos_angle.zw.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}

float2 bkwtrans(float2 xy, float4 sin_cos_angle)
{
float c = intersect(xy, sin_cos_angle);
float2 point_ = float2(c,c)*xy;
point_ -= float2(-R,-R)*sin_cos_angle.xy;
point_ /= float2(R,R);
float2 tang = sin_cos_angle.xy/sin_cos_angle.zw;
float2 poc = point_/sin_cos_angle.zw;
float A = dot(tang,tang)+1.0;
float B = -2.0*dot(poc,tang);
float C = dot(poc,poc)-1.0;
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
float2 uv = (point_-a*sin_cos_angle.xy)/sin_cos_angle.zw;
float r = FIX(R*acos(a));
return uv*r/sin(r/R);
}

float2 fwtrans(float2 uv, float4 sin_cos_angle)
{
float r = FIX(sqrt(dot(uv,uv)));
uv *= sin(r/R)/r;
float x = 1.0-cos(r/R);
float D = d/R + x*sin_cos_angle.z*sin_cos_angle.w+dot(uv,sin_cos_angle.xy);
return d*(uv*sin_cos_angle.zw-x*sin_cos_angle.xy)/D;
}

float3 maxscale(float4 sin_cos_angle)
{
float2 c = bkwtrans(-R * sin_cos_angle.xy / (1.0 + R/d*sin_cos_angle.z*sin_cos_angle.w), sin_cos_angle);
float2 a = float2(0.5,0.5)*aspect;
float2 lo = float2(fwtrans(float2(-a.x,c.y), sin_cos_angle).x,
fwtrans(float2(c.x,-a.y), sin_cos_angle).y)/aspect;
float2 hi = float2(fwtrans(float2(+a.x,c.y), sin_cos_angle).x,
fwtrans(float2(c.x,+a.y), sin_cos_angle).y)/aspect;
return float3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
}

// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
float4 scanlineWeights(float distance, float4 color)
{
// "wid" controls the width of the scanline beam, for each RGB
// channel The "weights" lines basically specify the formula
// that gives you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
#ifdef USEGAUSSIAN
float4 wid = 0.3 + 0.1 * pow(color, float4(3.0, 3.0, 3.0, 3.0));
float v = distance / (wid * scanline_weight/0.3);
float4 weights = float4(v,v,v,v);
return (lum + 0.4) * exp(-weights * weights) / wid;
#else
float4 wid = 2.0 + 2.0 * pow(color, float4(4.0, 4.0, 4.0, 4.0));
float v = distance / scanline_weight;
float4 weights = float4(v,v,v,v);
return (lum + 1.4) * exp(-pow(weights * rsqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
#endif
}

struct out_vertex {
float4 position : COMPAT_POS;
float2 texCoord : TEXCOORD0;
#ifdef HLSL_4
float2 one : VAR0;
float mod_factor : VAR1;
float2 ilfac : VAR2;
float3 stretch : VAR3;
float4 sin_cos_angle : VAR4;
float2 TextureSize : VAR5;
#else
float2 one;
float mod_factor;
float2 ilfac;
float3 stretch;
float4 sin_cos_angle;
float2 TextureSize;
float4 Color : COLOR;
#endif
};


/* VERTEX_SHADER */
out_vertex main_vertex(COMPAT_IN_VERTEX)
{
out_vertex OUT;
#ifdef HLSL_4
float4 position = VIN.position;
float2 texCoord = VIN.texCoord;
#else
OUT.Color = color;
#endif

OUT.position = mul(modelViewProj, position);

// Precalculate a bunch of useful values we'll need in the fragment
// shader.
float2 sinangle = sin(float2(x_tilt, y_tilt));
float2 cosangle = cos(float2(x_tilt, y_tilt));
OUT.sin_cos_angle = float4(sinangle.x, sinangle.y, cosangle.x, cosangle.y);
OUT.stretch = maxscale(OUT.sin_cos_angle);
OUT.texCoord = texCoord;
OUT.TextureSize = float2(SHARPER * COMPAT_texture_size.x, COMPAT_texture_size.y);

OUT.ilfac = float2(1.0,clamp(floor(COMPAT_video_size.y/(200.0 * interlace_toggle)),1.0,2.0));

// The size of one texel, in texture-coordinates.
OUT.one = OUT.ilfac / OUT.TextureSize;

// Resulting X pixel-coordinate of the pixel we're drawing.
OUT.mod_factor = texCoord.x * COMPAT_texture_size.x * COMPAT_output_size.x / COMPAT_video_size.x;
return OUT;
}

/* FRAGMENT SHADER */
float4 crt_geom(float2 texture_size, float2 video_size, float2 output_size, float frame_count, float4 sin_cos_angle, float3 stretch,
float2 ilfac, float2 one, float mod_factor, float2 TextureSize, float2 texCoord, COMPAT_Texture2D(s0))
{
// Here's a helpful diagram to keep in mind while trying to
// understand the code:
//
// | | | | |
// -------------------------------
// | | | | |
// | 01 | 11 | 21 | 31 | <-- current scanline
// | | @ | | |
// -------------------------------
// | | | | |
// | 02 | 12 | 22 | 32 | <-- next scanline
// | | | | |
// -------------------------------
// | | | | |
//
// Each character-cell represents a pixel on the output
// surface, "@" represents the current pixel (always somewhere
// in the bottom half of the current scan-line, or the top-half
// of the next scanline). The grid of lines represents the
// edges of the texels of the underlying texture.

// Texture coordinates of the texel containing the active pixel.
float2 xy = 0.0;
if (CURVATURE > 0.5)
{
float2 cd = texCoord;
cd *= texture_size / video_size;
cd = (cd-float2(0.5, 0.5))*aspect*stretch.z+stretch.xy;
xy = (bkwtrans(cd, sin_cos_angle)/float2(overscan_x / 100.0, overscan_y / 100.0)/aspect+float2(0.5, 0.5)) * video_size / texture_size;
}
else
{
xy = texCoord;
}

float2 cd2 = xy;
cd2 *= texture_size / video_size;
cd2 = (cd2 - float2(0.5, 0.5)) * float2(overscan_x / 100.0, overscan_y / 100.0) + float2(0.5, 0.5);
cd2 = min(cd2, float2(1.0, 1.0)-cd2) * aspect;
float2 cdist = float2(cornersize, cornersize);
cd2 = (cdist - min(cd2,cdist));
float dist = sqrt(dot(cd2,cd2));
float cval = clamp((cdist.x-dist)*cornersmooth,0.0, 1.0);

float2 xy2 = ((xy*TextureSize/video_size-float2(0.5, 0.5))*float2(1.0,1.0)+float2(0.5, 0.5))*video_size/TextureSize;
// Of all the pixels that are mapped onto the texel we are
// currently rendering, which pixel are we currently rendering?
float2 ilfloat = float2(0.0,ilfac.y > 1.5 ? mod(float(frame_count),2.0) : 0.0);

float2 ratio_scale = (xy * TextureSize - float2(0.5,0.5) + ilfloat)/ilfac;

#ifdef OVERSAMPLE
float filter = video_size.y / output_size.y;
#endif
float2 uv_ratio = frac(ratio_scale);

// Snap to the center of the underlying texel.

xy = (floor(ratio_scale)*ilfac + float2(0.5, 0.5) - ilfloat) / TextureSize;

// Calculate Lanczos scaling coefficients describing the effect
// of various neighbour texels in a scanline on the current
// pixel.
float4 coeffs = PI * float4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);

// Prevent division by zero.
coeffs = FIX(coeffs);

// Lanczos2 kernel.
coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs);

// Normalize.
coeffs /= dot(coeffs, float4(1.0, 1.0, 1.0, 1.0));

// Calculate the effective colour of the current and next
// scanlines at the horizontal location of the current pixel,
// using the Lanczos coefficients above.
float4 col = clamp(mul(coeffs, float4x4(
TEX2D(xy + float2(-one.x, 0.0)),
TEX2D(xy),
TEX2D(xy + float2(one.x, 0.0)),
TEX2D(xy + float2(2.0 * one.x, 0.0)))),
0.0, 1.0);
float4 col2 = clamp(mul(coeffs, float4x4(
TEX2D(xy + float2(-one.x, one.y)),
TEX2D(xy + float2(0.0, one.y)),
TEX2D(xy + one),
TEX2D(xy + float2(2.0 * one.x, one.y)))),
0.0, 1.0);

#ifndef LINEAR_PROCESSING
col = pow(col , float4(CRTgamma));
col2 = pow(col2, float4(CRTgamma));
#endif

// Calculate the influence of the current and next scanlines on
// the current pixel.
float4 weights = scanlineWeights(uv_ratio.y, col);
float4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
#ifdef OVERSAMPLE
uv_ratio.y =uv_ratio.y+1.0/3.0*filter;
weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0;
weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0;
uv_ratio.y =uv_ratio.y-2.0/3.0*filter;
weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0;
weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0;
#endif
float3 mul_res = (col * weights + col2 * weights2).rgb;
mul_res *= float3(cval, cval, cval);

// dot-mask emulation:
// Output pixels are alternately tinted green and magenta.
float3 dotMaskWeights = lerp(
float3(1.0, 1.0 - DOTMASK, 1.0),
float3(1.0 - DOTMASK, 1.0, 1.0 - DOTMASK),
floor(mod(mod_factor, 2.0))
);
mul_res *= dotMaskWeights;


// Convert the image gamma for display on our output device.
mul_res = pow(mul_res, float3(1.0 / monitorgamma, 1.0 / monitorgamma, 1.0 / monitorgamma));

// Color the texel.
return float4(mul_res, 1.0);
}

float4 main_fragment(COMPAT_IN_FRAGMENT) : COMPAT_Output
{
return crt_geom(COMPAT_texture_size, COMPAT_video_size, COMPAT_output_size, COMPAT_frame_count, VOUT.sin_cos_angle, VOUT.stretch,
VOUT.ilfac, VOUT.one, VOUT.mod_factor, VOUT.TextureSize, VOUT.texCoord, decal);
}
COMPAT_END
Loading

0 comments on commit 3320f53

Please sign in to comment.