-
Notifications
You must be signed in to change notification settings - Fork 12
/
testRunMonte_main.py
92 lines (80 loc) · 4.52 KB
/
testRunMonte_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
'''
Purpose: This program is to test waterfall with random loan default model
Author: Mengheng
Date: 11/26/2018
'''
import csv
from loan.loan_pool import LoanPool
from loan.autoloan import AutoLoan
from asset.car_base import Car
from tranche.structured_securities import StructuredSecurities
from usefulFunctions.doWaterfall import doWaterfall
import itertools
def main():
# logging.basicConfig(level=logging.INFO)
# create a loan_pool object by loading the loan data in the csv file
loan_pool = LoanPool([])
with open('Loans.csv', 'r') as fp:
reader = csv.reader(fp, delimiter=',')
header = next(reader, None) # skip first row
for row in reader:
asset_type = row[5]
asset_value = float(row[6])
if asset_type == 'Car': # in the csv file we only have car type asset
car = Car(asset_value)
loan_type = row[1]
face = float(row[2])
rate = float(row[3])
term = int(row[4])
if loan_type == 'Auto Loan': # in the cvs file we only have auto loan type
loan = AutoLoan(term, rate, face, car) # create loan object
loan_pool.loan_list.append(loan) # add it to loan_pool
# set tranche A and tranche B information
tranche_percents = [0.6, 0.4]
tranche_rates = [0.02, 0.03] # subordinated tranche should have higher rate since increased risk
tranche_levels = [0, 1] # 0 is higher class than 1
structured_securities = StructuredSecurities.constructSecurities(loan_pool.totalPrincipal(), tranche_percents,
tranche_rates, tranche_levels)
structured_securities.mode = 'Sequential' # set mode Sequential or Pro Rata
loan_pool_waterfall, structured_securities_waterfall, reserve_amount, tranche_metrics = doWaterfall(loan_pool,
structured_securities)
with open('loan pool waterfall.csv', 'w') as lp_fp:
header_list = []
# add header line for each loan
for i in range(len(loan_pool_waterfall[0])):
header = ['Loan ' + str(i + 1) + ' Monthly Payment', 'Loan ' + str(i + 1) + ' Principal Due',
'Loan ' + str(i + 1) + ' Interest Due', 'Loan ' + str(i + 1) + ' Balance']
header_list.append(header)
flattened_headers = [item for sublist in header_list for item in sublist]
lp_fp.write(','.join(map(str, list(flattened_headers))) + '\n')
# do loan waterfall and save results in one csv file
for loans in loan_pool_waterfall:
# since it is list of list, we need to flatten it first
flattened_loans = [item for sublist in loans for item in sublist]
lp_fp.write(','.join(map(str, list(itertools.chain(flattened_loans)))) + '\n')
with open('securities_waterfall.csv', 'w') as sc_fp:
header_list = []
# add header for each structured security
for i in range(len(structured_securities_waterfall[0])):
header = ['Tranche ' + str(i + 1) + ' Interest Due', 'Tranche ' + str(i + 1) + ' Interest Paid',
'Tranche ' + str(i + 1) + ' Interest Shortfall', ' Tranche ' + str(i + 1) + ' Principal Paid',
'Tranche ' + str(i + 1) + ' Balance']
header_list.append(header)
header_list.append(['Reserve Account'])
flattened_headers = [item for sublist in header_list for item in sublist]
sc_fp.write(','.join(map(str, list(flattened_headers))) + '\n')
# do securities waterfall and save results in one csv file
for tranches, res_cash in zip(structured_securities_waterfall, reserve_amount):
flattened_tranches = [item for sublist in tranches for item in sublist] # flatten the list first
sc_fp.write(','.join(map(str, list(itertools.chain(flattened_tranches))) +
[str(res_cash)]) + '\n')
# output the waterfall metrics and letter rating to the screen
print '{0:<10s} {1:<10s} {2:<10s} {3:<10s}'.format('IRR', 'DIRR', 'AL', 'LetterRating')
for tranche_metric in tranche_metrics:
print '{0:<11f}{1:<11f}{2:<11f}{3:<11s}'.format(*tranche_metric)
'''
You could run waterfall several times, and each run results in a different DIRR and AL for a given set of rates.
This is because I am using a random component to the loan default model.
'''
if __name__ == '__main__':
main()