-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathscheduler.py
69 lines (64 loc) · 3.22 KB
/
scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#https://github.com/gaussian37/pytorch_deep_learning_models/blob/master/cosine_annealing_with_warmup/cosine_annealing_with_warmup.py
import math
from torch.optim.lr_scheduler import _LRScheduler
class CosineAnnealingWarmUpRestarts(_LRScheduler):
def __init__(self, optimizer, T_0, T_mult=1, eta_max=0.1, T_up=0, gamma=1., last_epoch=-1):
""" Customed CosineAnnealingWarmUpRestarts class
Args:
optimizer : optimizer to use
T_0 (int): Cycle for annealing
T_mult (int, optional): A factor increases T_i after a restart. Default: 1.Defaults to 1.
eta_max (float, optional): maximum of lr. Defaults to 0.1.
T_up (int, optional): Period of increasing learning rate linearly. Defaults to 0.
gamma (float, optional): . ratio that reduces lr after the cycle is over. Defaults to 1..
last_epoch (int, optional): The index of last epoch. Default: -1.
"""
if T_0 <= 0 or not isinstance(T_0, int):
raise ValueError("Expected positive integer T_0, but got {}".format(T_0))
if T_mult < 1 or not isinstance(T_mult, int):
raise ValueError("Expected integer T_mult >= 1, but got {}".format(T_mult))
if T_up < 0 or not isinstance(T_up, int):
raise ValueError("Expected positive integer T_up, but got {}".format(T_up))
self.T_0 = T_0
self.T_mult = T_mult
self.base_eta_max = eta_max
self.eta_max = eta_max
self.T_up = T_up
self.T_i = T_0
self.gamma = gamma
self.cycle = 0
self.T_cur = last_epoch
super(CosineAnnealingWarmUpRestarts, self).__init__(optimizer, last_epoch)
def get_lr(self):
if self.T_cur == -1:
return self.base_lrs
elif self.T_cur < self.T_up:
return [(self.eta_max - base_lr)*self.T_cur / self.T_up + base_lr for base_lr in self.base_lrs]
else:
return [base_lr + (self.eta_max - base_lr) * (1 + math.cos(math.pi * (self.T_cur-self.T_up) / (self.T_i - self.T_up))) / 2
for base_lr in self.base_lrs]
def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.T_cur = self.T_cur + 1
if self.T_cur >= self.T_i:
self.cycle += 1
self.T_cur = self.T_cur - self.T_i
self.T_i = (self.T_i - self.T_up) * self.T_mult + self.T_up
else:
if epoch >= self.T_0:
if self.T_mult == 1:
self.T_cur = epoch % self.T_0
self.cycle = epoch // self.T_0
else:
n = int(math.log((epoch / self.T_0 * (self.T_mult - 1) + 1), self.T_mult))
self.cycle = n
self.T_cur = epoch - self.T_0 * (self.T_mult ** n - 1) / (self.T_mult - 1)
self.T_i = self.T_0 * self.T_mult ** (n)
else:
self.T_i = self.T_0
self.T_cur = epoch
self.eta_max = self.base_eta_max * (self.gamma**self.cycle)
self.last_epoch = math.floor(epoch)
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr