-
Notifications
You must be signed in to change notification settings - Fork 16
/
tricycle_kinematic.py
155 lines (129 loc) · 3.64 KB
/
tricycle_kinematic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""
Example tricycle_kinematic.py
Author: Joshua A. Marshall <joshua.marshall@queensu.ca>
GitHub: https://github.com/botprof/agv-examples
"""
# %%
# SIMULATION SETUP
import numpy as np
import matplotlib.pyplot as plt
from mobotpy.models import Tricycle
from mobotpy.integration import rk_four
# Set the simulation time [s] and the sample period [s]
SIM_TIME = 15.0
T = 0.1
# Create an array of time values [s]
t = np.arange(0.0, SIM_TIME, T)
N = np.size(t)
# Set the wheelbase and track of the vehicle [m]
ELL_W = 2.50
ELL_T = 1.75
# %%
# MODEL DEFINITION
def tricycle_f(x, u):
"""Tricycle vehicle kinematic model."""
f = np.zeros(4)
f[0] = u[0] * np.cos(x[2])
f[1] = u[0] * np.sin(x[2])
f[2] = u[0] * 1.0 / ELL_W * np.tan(x[3])
f[3] = u[1]
return f
# %%
# RUN SIMULATION
# Initialize arrays that will be populated with our inputs and states
x = np.zeros((4, N))
u = np.zeros((2, N))
# Set the initial pose [m, m, rad, rad], velocities [m/s, rad/s]
x[0, 0] = 0.0
x[1, 0] = 0.0
x[2, 0] = np.pi / 2.0
x[3, 0] = 0.0
u[0, 0] = 5.0
u[1, 0] = 0
# Run the simulation
for k in range(1, N):
x[:, k] = rk_four(tricycle_f, x[:, k - 1], u[:, k - 1], T)
u[0, k] = 5.0
u[1, k] = 0.25 * np.sin(2.0 * t[k])
# %%
# MAKE SOME PLOTS
# Change some plot settings (optional)
plt.rc("text", usetex=True)
plt.rc("text.latex", preamble=r"\usepackage{cmbright,amsmath,bm}")
plt.rc("savefig", format="pdf")
plt.rc("savefig", bbox="tight")
# Plot the states as a function of time
fig1 = plt.figure(1)
fig1.set_figheight(6.4)
ax1a = plt.subplot(611)
plt.plot(t, x[0, :])
plt.grid(color="0.95")
plt.ylabel(r"$x$ [m]")
plt.setp(ax1a, xticklabels=[])
ax1b = plt.subplot(612)
plt.plot(t, x[1, :])
plt.grid(color="0.95")
plt.ylabel(r"$y$ [m]")
plt.setp(ax1b, xticklabels=[])
ax1c = plt.subplot(613)
plt.plot(t, x[2, :] * 180.0 / np.pi)
plt.grid(color="0.95")
plt.ylabel(r"$\theta$ [deg]")
plt.setp(ax1c, xticklabels=[])
ax1c = plt.subplot(614)
plt.plot(t, x[3, :] * 180.0 / np.pi)
plt.grid(color="0.95")
plt.ylabel(r"$\phi$ [deg]")
plt.setp(ax1c, xticklabels=[])
ax1c = plt.subplot(615)
plt.step(t, u[0, :], "C1", where="post")
plt.grid(color="0.95")
plt.ylabel(r"$v_1$ [m/s]")
plt.setp(ax1c, xticklabels=[])
ax1d = plt.subplot(616)
plt.step(t, u[1, :], "C1", where="post")
plt.grid(color="0.95")
plt.ylabel(r"$v_2$ [deg/s]")
plt.xlabel(r"$t$ [s]")
# Save the plot
# plt.savefig("../agv-book/figs/ch3/tricycle_kinematic_fig1.pdf")
# Let's now use the class Tricycle for plotting
vehicle = Tricycle(ELL_W, ELL_T)
# Plot the position of the vehicle in the plane
fig2 = plt.figure(2)
plt.plot(x[0, :], x[1, :])
plt.axis("equal")
X_L, Y_L, X_R, Y_R, X_F, Y_F, X_B, Y_B = vehicle.draw(
x[0, 0], x[1, 0], x[2, 0], x[3, 0]
)
plt.fill(X_L, Y_L, "k")
plt.fill(X_R, Y_R, "k")
plt.fill(X_F, Y_F, "k")
plt.fill(X_B, Y_B, "C2", alpha=0.5, label="Start")
X_L, Y_L, X_R, Y_R, X_F, Y_F, X_B, Y_B = vehicle.draw(
x[0, N - 1], x[1, N - 1], x[2, N - 1], x[3, N - 1]
)
plt.fill(X_L, Y_L, "k")
plt.fill(X_R, Y_R, "k")
plt.fill(X_F, Y_F, "k")
plt.fill(X_B, Y_B, "C3", alpha=0.5, label="End")
plt.xlabel(r"$x$ [m]")
plt.ylabel(r"$y$ [m]")
plt.legend()
# Save the plot
# plt.savefig("../agv-book/figs/ch3/tricycle_kinematic_fig2.pdf")
# Show the plots to the screen
# plt.show()
# %%
# MAKE AN ANIMATION
# Create and save the animation
ani = vehicle.animate(x, T)
# Create and save the animation
# ani = vehicle.animate(x, T, True, "../agv-book/gifs/ch3/tricycle_kinematic.gif")
# Show all the plots to the screen
plt.show()
# Show animation in HTML output if you are using IPython or Jupyter notebooks
# from IPython.display import display
# plt.rc('animation', html='jshtml')
# display(ani)
# plt.close()