-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalib.py
104 lines (86 loc) · 3.03 KB
/
calib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
from multiprocessing import Pool
import cv2
import numpy as np
import glob
import pickle as pkl
# Defining the dimensions of checkerboard
from calib_thread import frame
CHECKERBOARD = (6, 6)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# Creating vector to store vectors of 3D points for each checkerboard image
objpoints = []
# Creating vector to store vectors of 2D points for each checkerboard image
imgpoints = []
# Defining the world coordinates for 3D points
objp = np.zeros((1, CHECKERBOARD[0] * CHECKERBOARD[1], 3), np.float32)
objp[0, :, :2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
# s = (12.9 / 6) / 1000
#s = (139.38 / 5) / 1000
for col in objp:
for row in col:
row[0] *= 27.05 / 1000
row[1] *= 27.53 / 1000
# row[0] *= s
# row[1] *= s
# row[2] *= s
prev_img_shape = None
# Extracting path of individual image stored in a given directory
images = list(glob.glob("images/picam-0/*"))
if __name__ == '__main__':
with Pool(processes=16) as p:
mapped = list(p.map(frame, images))
for item in mapped:
if item is not None:
# ob, im = item
imgpoints.append(item)
objpoints.append(objp)
# for fname in images:
# img = cv2.imread(fname)
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# # Find the chess board corners
# # If desired number of corners are found in the image then ret = true
# ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE)
#
# """
# If desired number of corner are detected,
# we refine the pixel coordinates and display
# them on the images of checker board
# """
# if ret:
# print(".", end="")
# objpoints.append(objp)
# # refining pixel coordinates for given 2d points.
# corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
#
# imgpoints.append(corners2)
#
# # # Draw and display the corners
# # img = cv2.drawChessboardCorners(img, CHECKERBOARD, corners2, ret)
# else:
# print("x", end="")
#
# # cv2.imshow('img', img)
# # cv2.waitKey(0)
# cv2.destroyAllWindows()
h, w = 972, 1296
# h, w = img.shape[:2]
"""
Performing camera calibration by
passing the value of known 3D points (objpoints)
and corresponding pixel coordinates of the
detected corners (imgpoints)
"""
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, (w, h), None, None)
print("Camera matrix : \n")
print(mtx)
print("dist : \n")
print(dist)
if os.path.exists("calib-picam-0"):
os.remove("calib-picam-0")
with open("calib-picam-0", "xb") as f:
pkl.dump((mtx, dist), f)
# print("rvecs : \n")
# print(rvecs)
# print("tvecs : \n")
# print(tvecs)