-
Notifications
You must be signed in to change notification settings - Fork 2
/
intron_size_analysis.py
182 lines (143 loc) · 4.25 KB
/
intron_size_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
### Boas Pucker ###
### bpucker@cebitec.uni-bielefeld.de ###
### v0.1 ###
__usage__ = """
python intron_size_analysis.py
--in <FULL_PATH_TO_INPUT_FOLDER>
--out <FULL_PATH_TO_OUTPUT_FOLDER>
info: runs for a long time!
"""
import glob, os, sys
import matplotlib.pyplot as plt
from scipy import stats
# --- end of imports --- #
def calculate_bins( intron_sizes, normalization=True ):
"""! @brief calculate size and positions of bins """
bin_number = 1000.0
upper_cutoff = 5000
# --- load data from file --- #
min_size = 20 #min( intron_sizes )
max_size = upper_cutoff #min( [ upper_cutoff, max( intron_sizes ) ] )
step = (max_size-min_size) / bin_number
start = min_size + 0
end = min_size + step
x_values = []
y_values = []
while end <= max_size:
counter = 0
for size in intron_sizes:
if size < end and size >= start:
counter += 1
x_values.append( ( start+end )/2.0 )
y_values.append( counter )
start += step
end += step
counter = 0
for size in intron_sizes:
if size >= end:
counter += 1
x_values.append( end )
y_values.append( counter )
# --- normalization --- #
if normalization:
y_norm = []
total = 100.0 * sum( y_values )
for val in y_values:
y_norm.append( val / total )
return x_values, y_norm
else:
return x_values, y_values
def run_intron_size_analysis( filename, output_file ):
"""! @brief fun intron size analysis """
# --- loading data --- #
css = []
ncss = []
with open( filename, "r" ) as f:
line = f.readline()
while line:
parts = line.strip().split('\t')
if len( parts ) > 3:
if parts[ 3 ] == "css":
positions = sorted( map( int, parts[4].replace('_', ",").split(',') ) )
css.append( positions[ 4 ]-positions[ 3 ] )
if positions[ 4 ]-positions[ 3 ] == 1:
print line
elif parts[3] == "ncss":
positions = sorted( map( int, parts[4].replace('_', ",").split(',') ) )
ncss.append( positions[ 4 ]-positions[ 3 ] )
line = f.readline()
return css, ncss
def construct_combined_plot( data, fig_file, fig_file2 ):
"""! @brief construct consensus plot """
css = []
ncss = []
for entry in data:
css += entry['css']
ncss += entry['ncss']
# --- plot distribution --- #
x_css = []
y_css = []
x_ncss = []
y_ncss = []
x_css, y_css = calculate_bins( css )
x_ncss, y_ncss = calculate_bins( ncss )
fig, ax = plt.subplots()
ax.plot( x_css, y_css, color="green", label="css", alpha=0.5 )
ax.plot( x_ncss, y_ncss, color="red", label="ncss", alpha=0.5 )
ax.legend( bbox_to_anchor=( 0.9, 0.9 ) )
ax.set_xlabel("intron length [bp]")
ax.set_ylabel( "frequency [%]" )
fig.savefig( fig_file, dpi=300 )
plt.close("all")
data_output_file = fig_file + "_values.txt"
with open( data_output_file, "w" ) as out:
out.write( "\t".join( map( str, x_css ) ) + '\n' )
out.write( "\t".join( map( str, y_css ) ) + '\n' )
out.write( "\t".join( map( str, y_ncss ) ) + '\n' )
print stats.wilcoxon( y_css, y_ncss, zero_method="pratt" )
# --- analyze how many introns lengths are multiples of 3 --- #
css = []
ncss = []
for each in data:
css += each['css']
ncss += each['ncss']
ncss_no3 = 0
ncss_3 = 0
css_no3 = 0
css_3 = 0
for each in css:
if each % 3 == 0:
css_3 += 1
else:
css_no3 += 1
for each in ncss:
if each % 3 == 0:
ncss_3 += 1
else:
ncss_no3 += 1
print ncss_no3
print ncss_3
print css_no3
print css_3
print stats.chisquare( [ ncss_3, ncss_no3 ], [ css_3, css_no3 ] )
def main( arguments ):
"""! @brief runs all parts """
data_dir = arguments[ arguments.index('--in')+1 ] #NCBI splice site check result folder
output_dir = arguments[ arguments.index('--out')+1 ] #output folder
if not os.path.exists( output_dir ):
os.makedirs( output_dir )
filenames = glob.glob( data_dir + "*.txt" )
data = []
fig_file = output_dir + "consensus_plot.png"
fig_file2 = output_dir + "frame_check.png"
for filename in filenames:
ID = filename.split('/')[-1].split('.')[0]
output_file = output_dir + ID + ".png"
css, ncss = run_intron_size_analysis( filename, output_file )
data.append( { 'css': css, 'ncss': ncss } )
construct_combined_plot( data, fig_file, fig_file2 )
if __name__ == '__main__':
if '--in' in sys.argv and '--out' in sys.argv:
main( sys.argv )
else:
sys.exit( __usage__ )