-
Augmentations:
- Random Horizontal flip
-
Preprocessing:
- Resize to 136x136
- Center Crop for 128x128
- Normalizing for range -1 to 1
Architecture: DCGAN
Discriminator's Summary:
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 64, 64] 3,136
LeakyReLU-2 [-1, 64, 64, 64] 0
Conv2d-3 [-1, 128, 32, 32] 131,072
BatchNorm2d-4 [-1, 128, 32, 32] 256
LeakyReLU-5 [-1, 128, 32, 32] 0
Conv2d-6 [-1, 256, 16, 16] 524,288
BatchNorm2d-7 [-1, 256, 16, 16] 512
LeakyReLU-8 [-1, 256, 16, 16] 0
Conv2d-9 [-1, 512, 8, 8] 2,097,152
BatchNorm2d-10 [-1, 512, 8, 8] 1,024
LeakyReLU-11 [-1, 512, 8, 8] 0
Conv2d-12 [-1, 1024, 4, 4] 8,388,608
BatchNorm2d-13 [-1, 1024, 4, 4] 2,048
LeakyReLU-14 [-1, 1024, 4, 4] 0
Conv2d-15 [-1, 1, 1, 1] 16,385
Flatten-16 [-1, 1] 0
================================================================
Total params: 11,164,481
Trainable params: 11,164,481
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.19
Forward/backward pass size (MB): 9.63
Params size (MB): 42.59
Estimated Total Size (MB): 52.40
----------------------------------------------------------------
Generator's Summary:
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
ConvTranspose2d-1 [-1, 1024, 4, 4] 2,097,152
BatchNorm2d-2 [-1, 1024, 4, 4] 2,048
ReLU-3 [-1, 1024, 4, 4] 0
ConvTranspose2d-4 [-1, 512, 8, 8] 8,388,608
BatchNorm2d-5 [-1, 512, 8, 8] 1,024
ReLU-6 [-1, 512, 8, 8] 0
ConvTranspose2d-7 [-1, 256, 16, 16] 2,097,152
BatchNorm2d-8 [-1, 256, 16, 16] 512
ReLU-9 [-1, 256, 16, 16] 0
ConvTranspose2d-10 [-1, 128, 32, 32] 524,288
BatchNorm2d-11 [-1, 128, 32, 32] 256
ReLU-12 [-1, 128, 32, 32] 0
ConvTranspose2d-13 [-1, 64, 64, 64] 131,072
BatchNorm2d-14 [-1, 64, 64, 64] 128
ReLU-15 [-1, 64, 64, 64] 0
ConvTranspose2d-16 [-1, 3, 128, 128] 3,075
Tanh-17 [-1, 3, 128, 128] 0
================================================================
Total params: 13,245,315
Trainable params: 13,245,315
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 12.38
Params size (MB): 50.53
Estimated Total Size (MB): 62.90
----------------------------------------------------------------
- Objective loss :
Adversarial Loss
- Optimizer :
Adam
for both models - Learning Rate : 0.0004 for both models, and then decreased to 0.00002 by inspecting generator's outputs
- Trained Epochs : 33