-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfigure4A.py
258 lines (207 loc) · 8.91 KB
/
figure4A.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# -*- coding: utf-8 -*-
"""
Implementation of the paper:
- Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R.,
& Maass, W. (2020). A solution to the learning dilemma for recurrent networks
of spiking neurons. Nature communications, 11(1), 1-15.
"""
import brainpy as bp
import brainpy.math as bm
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import patches
from jax.lax import stop_gradient
bm.set_dt(1.) # Simulation time step [ms]
# training parameters
n_batch = 128 # batch size
# neuron model and simulation parameters
reg_f = 1. # regularization coefficient for firing rate
reg_rate = 10 # target firing rate for regularization [Hz]
# Experiment parameters
t_cue_spacing = 150 # distance between two consecutive cues in ms
# Frequencies
input_f0 = 40. / 1000. # poisson firing rate of input neurons in khz
regularization_f0 = reg_rate / 1000. # mean target network firing frequency
class EligSNN(bp.Network):
def __init__(self, num_in, num_rec, num_out, eprop=True, tau_a=2e3, tau_v=2e1):
super(EligSNN, self).__init__()
# parameters
self.num_in = num_in
self.num_rec = num_rec
self.num_out = num_out
self.eprop = eprop
# encoding: i2r
self.i2r = bp.dnn.Linear(num_in, num_rec, W_initializer=bp.init.KaimingNormal(), b_initializer=None)
self.i2r.W *= tau_v
# recurrent: r
n_regular = int(num_rec / 2)
n_adaptive = num_rec - n_regular
beta1 = bm.exp(- bm.get_dt() / tau_a)
beta2 = 1.7 * (1 - beta1) / (1 - bm.exp(-1 / tau_v))
beta = bm.concatenate([bm.ones(n_regular), bm.ones(n_adaptive) * beta2])
self.r = bp.neurons.ALIFBellec2020(
num_rec, V_rest=0., tau_ref=5., V_th=0.6, input_var=False,
tau_a=tau_a, tau=tau_v, beta=beta, eprop=eprop,
V_initializer=bp.init.ZeroInit(), a_initializer=bp.init.ZeroInit(),
)
# recurrent-to-recurrent
self.r2r = bp.dnn.Linear(num_rec, num_rec, W_initializer=bp.init.KaimingNormal(), b_initializer=None)
self.r2r.W *= tau_v
# recurrent-to-output
self.r2o = bp.dnn.Linear(num_rec, num_out, W_initializer=bp.init.KaimingNormal(), b_initializer=None)
# neurons
self.o = bp.dyn.Leaky(num_out, tau=20)
def update(self, x):
z = stop_gradient(self.r.spike.value) if self.eprop else self.r.spike.value
return (self.i2r(x) + self.r2r(z)) >> self.r >> self.r2o >> self.o
with bm.training_environment():
net = EligSNN(num_in=40, num_rec=100, num_out=2, eprop=True)
@bp.tools.numba_jit
def generate_click_task_data(batch_size, seq_len, n_neuron, recall_duration, prob, f0=0.5,
n_cues=7, t_cue=100, t_interval=150, n_input_symbols=4):
n_channel = n_neuron // n_input_symbols
# assign input spike probabilities
probs = np.where(np.random.random((batch_size, 1)) < 0.5, prob, 1 - prob)
# for each example in batch, draw which cues are going to be active (left or right)
cue_assignments = np.asarray(np.random.random(n_cues) > probs, dtype=np.int_)
# generate input nums - 0: left, 1: right, 2:recall, 3:background noise
input_nums = 3 * np.ones((batch_size, seq_len), dtype=np.int_)
input_nums[:, :n_cues] = cue_assignments
input_nums[:, -1] = 2
# generate input spikes
input_spike_prob = np.zeros((batch_size, seq_len, n_neuron))
d_silence = t_interval - t_cue
for b in range(batch_size):
for k in range(n_cues):
# input channels only fire when they are selected (left or right)
c = cue_assignments[b, k]
# reverse order of cues
i_seq = d_silence + k * t_interval
i_neu = c * n_channel
input_spike_prob[b, i_seq:i_seq + t_cue, i_neu:i_neu + n_channel] = f0
# recall cue
input_spike_prob[:, -recall_duration:, 2 * n_channel:3 * n_channel] = f0
# background noise
input_spike_prob[:, :, 3 * n_channel:] = f0 / 4.
input_spikes = input_spike_prob > np.random.rand(*input_spike_prob.shape)
# generate targets
target_mask = np.zeros((batch_size, seq_len), dtype=np.bool_)
target_mask[:, -1] = True
target_nums = (np.sum(cue_assignments, axis=1) > n_cues / 2).astype(np.int_)
return input_spikes, input_nums, target_nums, target_mask
def get_data(batch_size, n_in, t_interval, f0):
# used for obtaining a new randomly generated batch of examples
def generate_data():
for _ in range(10):
seq_len = int(t_interval * 7 + 1200)
spk_data, _, target_data, _ = generate_click_task_data(
batch_size=batch_size, seq_len=seq_len, n_neuron=n_in, recall_duration=150,
prob=0.3, t_cue=100, n_cues=7, t_interval=t_interval, f0=f0, n_input_symbols=4
)
yield spk_data, target_data
return generate_data
def loss_fun(predicts, targets):
predicts, mon = predicts
# we only use network output at the end for classification
output_logits = predicts[:, -t_cue_spacing:]
# Define the accuracy
y_predict = bm.argmax(bm.mean(output_logits, axis=1), axis=1)
accuracy = bm.equal(targets, y_predict).astype(bm.dftype()).mean()
# loss function
tiled_targets = bm.tile(bm.expand_dims(targets, 1), (1, t_cue_spacing))
loss_cls = bm.mean(bp.losses.cross_entropy_loss(output_logits, tiled_targets))
# Firing rate regularization:
# For historical reason we often use this regularization,
# but the other one is easier to implement in an "online" fashion by a single agent.
av = bm.mean(mon['r.spike'], axis=(0, 1)) / bm.get_dt()
loss_reg_f = bm.sum(bm.square(av - regularization_f0) * reg_f)
# Aggregate the losses #
loss = loss_reg_f + loss_cls
loss_res = {'loss': loss, 'loss reg': loss_reg_f, 'accuracy': accuracy}
return loss, loss_res
def visualize_results1(inputs, outputs, ts, spks, n_channel):
fig, gs = bp.visualize.get_figure(3, 1, 2., 6.)
ax_inp = fig.add_subplot(gs[0, 0])
ax_rec = fig.add_subplot(gs[1, 0])
ax_out = fig.add_subplot(gs[2, 0])
ax_inp.set_yticklabels([])
ax_inp.add_patch(patches.Rectangle((0, 2 * n_channel + 2 * int(n_channel / 2)),
inputs.shape[0], n_channel,
facecolor="red", alpha=0.1))
ax_inp.add_patch(patches.Rectangle((0, 3 * n_channel + 3 * int(n_channel / 2)),
inputs.shape[0], n_channel,
facecolor="blue", alpha=0.1))
bp.visualize.raster_plot(ts, inputs, ax=ax_inp, marker='|')
ax_inp.set_ylabel('Input Activity')
ax_inp.set_xticklabels([])
ax_inp.set_xticks([])
# spiking activity
bp.visualize.raster_plot(ts, spks, ax=ax_rec, marker='|')
ax_rec.set_ylabel('Spiking Activity')
ax_rec.set_xticklabels([])
ax_rec.set_xticks([])
# decision activity
ax_out.set_yticks([0, 0.5, 1])
ax_out.set_ylabel('Output Activity')
ax_out.plot(ts, outputs[:, 0], label='Readout 0', alpha=0.7)
ax_out.plot(ts, outputs[:, 1], label='Readout 1', alpha=0.7)
ax_out.set_xticklabels([])
ax_out.set_xticks([])
ax_out.set_xlabel('Time [ms]')
plt.legend()
plt.show()
def visualize_results2(outputs, spikes, ts, save_fn=None):
plt.rcParams.update({"font.size": 15})
fig, gs = bp.visualize.get_figure(2, 1, 2.25, 6)
ax1 = fig.add_subplot(gs[0, 0])
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
elements = np.where(spikes > 0.)
index = elements[1]
time = ts[elements[0]]
ax1.plot(time, index, '|', markersize=2)
ax1.set_ylabel('Spiking Activity')
ax1.set_xticklabels([])
ax1.set_xticks([])
plt.title('Spiking Neural Network')
ax = fig.add_subplot(gs[1, 0])
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.plot([0, ts[-1]], [0.5, 0.5], linestyle='--', color='gray')
outputs = bm.as_numpy(bm.softmax(outputs, axis=1))
ax.plot(ts, outputs[:, 0], color='tab:pink')
ax.set_ylabel('Output Activity')
ax.set_xticks([])
ax.set_xlabel('Time [ms]')
fig.align_ylabels([ax1, ax])
if save_fn:
plt.savefig(save_fn, transparent=True, dpi=1000)
plt.show()
# Training
trainer = bp.BPTT(
net,
loss_fun,
loss_has_aux=True,
optimizer=bp.optim.Adam(lr=0.01),
monitors={'r.spike': net.r.spike},
)
trainer.fit(get_data(n_batch, n_in=net.num_in, t_interval=t_cue_spacing, f0=input_f0),
num_epoch=30,
num_report=10)
# visualization
dataset, _ = next(get_data(20, n_in=net.num_in, t_interval=t_cue_spacing, f0=input_f0)())
runner = bp.DSTrainer(net, monitors={'spike': net.r.spike})
outs = runner.predict(dataset, reset_state=True)
for i in range(10):
data = dataset[i]
n_channel = data.shape[1] // 4
zero_fill = np.zeros((data.shape[0], int(n_channel / 2)))
data = np.concatenate((data[:, 3 * n_channel:], zero_fill,
data[:, 2 * n_channel:3 * n_channel], zero_fill,
data[:, :n_channel], zero_fill,
data[:, n_channel:2 * n_channel]), axis=1)
visualize_results1(data, outs[i], runner.mon['ts'], runner.mon['spike'][i], n_channel)
for i in range(10):
visualize_results2(outs[i], runner.mon['spike'][i, 60:], runner.mon['ts'],
save_fn=f'fig-{i}.pdf')
plt.close()